참고자료:
cs-ko
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:wmt19/cs-en')
- 설명 :
Translate dataset based on the data from statmt.org.
Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
config = datasets.wmt.WmtConfig(
version="0.0.1",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
builder = datasets.builder("wmt_translate", config=config)
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'train' | 7270695 |
'validation' | 2983년 |
- 특징 :
{
"translation": {
"languages": [
"cs",
"en"
],
"id": null,
"_type": "Translation"
}
}
디엔
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:wmt19/de-en')
- 설명 :
Translate dataset based on the data from statmt.org.
Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
config = datasets.wmt.WmtConfig(
version="0.0.1",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
builder = datasets.builder("wmt_translate", config=config)
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'train' | 38690334 |
'validation' | 2998년 |
- 특징 :
{
"translation": {
"languages": [
"de",
"en"
],
"id": null,
"_type": "Translation"
}
}
fi-en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:wmt19/fi-en')
- 설명 :
Translate dataset based on the data from statmt.org.
Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
config = datasets.wmt.WmtConfig(
version="0.0.1",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
builder = datasets.builder("wmt_translate", config=config)
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'train' | 6587448 |
'validation' | 3000 |
- 특징 :
{
"translation": {
"languages": [
"fi",
"en"
],
"id": null,
"_type": "Translation"
}
}
구엔
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:wmt19/gu-en')
- 설명 :
Translate dataset based on the data from statmt.org.
Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
config = datasets.wmt.WmtConfig(
version="0.0.1",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
builder = datasets.builder("wmt_translate", config=config)
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'train' | 11670 |
'validation' | 1998년 |
- 특징 :
{
"translation": {
"languages": [
"gu",
"en"
],
"id": null,
"_type": "Translation"
}
}
ㅋㅋ엔
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:wmt19/kk-en')
- 설명 :
Translate dataset based on the data from statmt.org.
Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
config = datasets.wmt.WmtConfig(
version="0.0.1",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
builder = datasets.builder("wmt_translate", config=config)
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'train' | 126583 |
'validation' | 2066년 |
- 특징 :
{
"translation": {
"languages": [
"kk",
"en"
],
"id": null,
"_type": "Translation"
}
}
lt-en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:wmt19/lt-en')
- 설명 :
Translate dataset based on the data from statmt.org.
Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
config = datasets.wmt.WmtConfig(
version="0.0.1",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
builder = datasets.builder("wmt_translate", config=config)
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'train' | 2344893 |
'validation' | 2000 |
- 특징 :
{
"translation": {
"languages": [
"lt",
"en"
],
"id": null,
"_type": "Translation"
}
}
루엔
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:wmt19/ru-en')
- 설명 :
Translate dataset based on the data from statmt.org.
Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
config = datasets.wmt.WmtConfig(
version="0.0.1",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
builder = datasets.builder("wmt_translate", config=config)
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'train' | 37492126 |
'validation' | 3000 |
- 특징 :
{
"translation": {
"languages": [
"ru",
"en"
],
"id": null,
"_type": "Translation"
}
}
zh-en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:wmt19/zh-en')
- 설명 :
Translate dataset based on the data from statmt.org.
Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
config = datasets.wmt.WmtConfig(
version="0.0.1",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
builder = datasets.builder("wmt_translate", config=config)
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'train' | 25984574 |
'validation' | 3981 |
- 특징 :
{
"translation": {
"languages": [
"zh",
"en"
],
"id": null,
"_type": "Translation"
}
}
fr-de
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:wmt19/fr-de')
- 설명 :
Translate dataset based on the data from statmt.org.
Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
config = datasets.wmt.WmtConfig(
version="0.0.1",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
builder = datasets.builder("wmt_translate", config=config)
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'train' | 9824476 |
'validation' | 1512 |
- 특징 :
{
"translation": {
"languages": [
"fr",
"de"
],
"id": null,
"_type": "Translation"
}
}