wmt14

참고자료:

cs-ko

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:wmt14/cs-en')
  • 설명 :
Translate dataset based on the data from statmt.org.

Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.


config = datasets.wmt.WmtConfig(
    version="0.0.1",
    language_pair=("fr", "de"),
    subsets={
        datasets.Split.TRAIN: ["commoncrawl_frde"],
        datasets.Split.VALIDATION: ["euelections_dev2019"],
    },
)
builder = datasets.builder("wmt_translate", config=config)
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 1.0.0
  • 분할 :
나뉘다
'test' 3003
'train' 953621
'validation' 3000
  • 특징 :
{
    "translation": {
        "languages": [
            "cs",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    }
}

디엔

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:wmt14/de-en')
  • 설명 :
Translate dataset based on the data from statmt.org.

Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.


config = datasets.wmt.WmtConfig(
    version="0.0.1",
    language_pair=("fr", "de"),
    subsets={
        datasets.Split.TRAIN: ["commoncrawl_frde"],
        datasets.Split.VALIDATION: ["euelections_dev2019"],
    },
)
builder = datasets.builder("wmt_translate", config=config)
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 1.0.0
  • 분할 :
나뉘다
'test' 3003
'train' 4508785
'validation' 3000
  • 특징 :
{
    "translation": {
        "languages": [
            "de",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    }
}

프렌

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:wmt14/fr-en')
  • 설명 :
Translate dataset based on the data from statmt.org.

Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.


config = datasets.wmt.WmtConfig(
    version="0.0.1",
    language_pair=("fr", "de"),
    subsets={
        datasets.Split.TRAIN: ["commoncrawl_frde"],
        datasets.Split.VALIDATION: ["euelections_dev2019"],
    },
)
builder = datasets.builder("wmt_translate", config=config)
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 1.0.0
  • 분할 :
나뉘다
'test' 3003
'train' 40836715
'validation' 3000
  • 특징 :
{
    "translation": {
        "languages": [
            "fr",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    }
}

안녕

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:wmt14/hi-en')
  • 설명 :
Translate dataset based on the data from statmt.org.

Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.


config = datasets.wmt.WmtConfig(
    version="0.0.1",
    language_pair=("fr", "de"),
    subsets={
        datasets.Split.TRAIN: ["commoncrawl_frde"],
        datasets.Split.VALIDATION: ["euelections_dev2019"],
    },
)
builder = datasets.builder("wmt_translate", config=config)
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 1.0.0
  • 분할 :
나뉘다
'test' 2507
'train' 32863
'validation' 520
  • 특징 :
{
    "translation": {
        "languages": [
            "hi",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    }
}

루엔

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:wmt14/ru-en')
  • 설명 :
Translate dataset based on the data from statmt.org.

Versions exists for the different years using a combination of multiple data
sources. The base `wmt_translate` allows you to create your own config to choose
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.


config = datasets.wmt.WmtConfig(
    version="0.0.1",
    language_pair=("fr", "de"),
    subsets={
        datasets.Split.TRAIN: ["commoncrawl_frde"],
        datasets.Split.VALIDATION: ["euelections_dev2019"],
    },
)
builder = datasets.builder("wmt_translate", config=config)
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 1.0.0
  • 분할 :
나뉘다
'test' 3003
'train' 1486965
'validation' 3000
  • 특징 :
{
    "translation": {
        "languages": [
            "ru",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    }
}