Referensi:
psgs_w100.nq.tepat
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:wiki_dpr/psgs_w100.nq.exact')
- Keterangan :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 0.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'train' | 21015300 |
- Fitur :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"embeddings": {
"feature": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
psgs_w100.nq.terkompresi
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:wiki_dpr/psgs_w100.nq.compressed')
- Keterangan :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 0.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'train' | 21015300 |
- Fitur :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"embeddings": {
"feature": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
psgs_w100.nq.no_index
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:wiki_dpr/psgs_w100.nq.no_index')
- Keterangan :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 0.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'train' | 21015300 |
- Fitur :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"embeddings": {
"feature": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
psgs_w100.multiset.tepat
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:wiki_dpr/psgs_w100.multiset.exact')
- Keterangan :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 0.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'train' | 21015300 |
- Fitur :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"embeddings": {
"feature": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
psgs_w100.multiset.terkompresi
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:wiki_dpr/psgs_w100.multiset.compressed')
- Keterangan :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 0.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'train' | 21015300 |
- Fitur :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"embeddings": {
"feature": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
psgs_w100.multiset.no_index
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:wiki_dpr/psgs_w100.multiset.no_index')
- Keterangan :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 0.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'train' | 21015300 |
- Fitur :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"embeddings": {
"feature": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}