Tài liệu tham khảo:
webnlg_challenge_2017
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:web_nlg/webnlg_challenge_2017')
- Sự miêu tả :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 0.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'dev' | 872 |
'test' | 4615 |
'train' | 6940 |
- Đặc trưng :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
phát hành_v1
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:web_nlg/release_v1')
- Sự miêu tả :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 0.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'full' | 14237 |
- Đặc trưng :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
phát hành_v2
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:web_nlg/release_v2')
- Sự miêu tả :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 0.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'dev' | 1619 |
'test' | 1600 |
'train' | 12876 |
- Đặc trưng :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
phát hành_v2_consbound
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:web_nlg/release_v2_constrained')
- Sự miêu tả :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 0.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'dev' | 1594 |
'test' | 1606 |
'train' | 12895 |
- Đặc trưng :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
phát hành_v2.1
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:web_nlg/release_v2.1')
- Sự miêu tả :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 0.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'dev' | 1619 |
'test' | 1600 |
'train' | 12876 |
- Đặc trưng :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
phát hành_v2.1_consbound
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:web_nlg/release_v2.1_constrained')
- Sự miêu tả :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 0.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'dev' | 1594 |
'test' | 1606 |
'train' | 12895 |
- Đặc trưng :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
phát hành_v3.0_en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:web_nlg/release_v3.0_en')
- Sự miêu tả :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 0.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'dev' | 1667 |
'test' | 5713 |
'train' | 13211 |
- Đặc trưng :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
phát hành_v3.0_ru
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:web_nlg/release_v3.0_ru')
- Sự miêu tả :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 0.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'dev' | 790 |
'test' | 3410 |
'train' | 5573 |
- Đặc trưng :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}