tmu_gfm_dataset

Referencias:

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:tmu_gfm_dataset')
  • Descripción :
A dataset for GEC metrics with manual evaluations of grammaticality, fluency, and meaning preservation for system outputs. More detail about the creation of the dataset can be found in Yoshimura et al. (2020).
  • Licencia : Ninguna licencia conocida
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'train' 4221
  • Características :
{
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "output": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "grammer": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "fluency": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "meaning": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "system": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "ave_g": {
        "dtype": "float32",
        "id": null,
        "_type": "Value"
    },
    "ave_f": {
        "dtype": "float32",
        "id": null,
        "_type": "Value"
    },
    "ave_m": {
        "dtype": "float32",
        "id": null,
        "_type": "Value"
    }
}