tmu_gfm_dataset

Riferimenti:

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:tmu_gfm_dataset')
  • Descrizione :
A dataset for GEC metrics with manual evaluations of grammaticality, fluency, and meaning preservation for system outputs. More detail about the creation of the dataset can be found in Yoshimura et al. (2020).
  • Licenza : nessuna licenza conosciuta
  • Versione : 1.1.0
  • Divide :
Diviso Esempi
'train' 4221
  • Caratteristiche :
{
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "output": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "grammer": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "fluency": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "meaning": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "system": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "ave_g": {
        "dtype": "float32",
        "id": null,
        "_type": "Value"
    },
    "ave_f": {
        "dtype": "float32",
        "id": null,
        "_type": "Value"
    },
    "ave_m": {
        "dtype": "float32",
        "id": null,
        "_type": "Value"
    }
}