swiss_judgment_prediction

Referanslar:

de

Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:

ds = tfds.load('huggingface:swiss_judgment_prediction/de')
  • Tanım :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.  
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,  
to promote robustness and fairness studies on the critical area of legal NLP.
  • Lisans : Bilinen lisans yok
  • Sürüm : 1.0.0
  • Bölünmeler :
Bölmek Örnekler
'test' 9725
'train' 35458
'validation' 4705
  • Özellikler :
{
    "id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "year": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 2,
        "names": [
            "dismissal",
            "approval"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "language": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "region": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "canton": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "legal area": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

Fr

Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:

ds = tfds.load('huggingface:swiss_judgment_prediction/fr')
  • Tanım :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.  
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,  
to promote robustness and fairness studies on the critical area of legal NLP.
  • Lisans : Bilinen lisans yok
  • Sürüm : 1.0.0
  • Bölünmeler :
Bölmek Örnekler
'test' 6820
'train' 21179
'validation' 3095
  • Özellikler :
{
    "id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "year": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 2,
        "names": [
            "dismissal",
            "approval"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "language": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "region": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "canton": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "legal area": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

BT

Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:

ds = tfds.load('huggingface:swiss_judgment_prediction/it')
  • Tanım :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.  
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,  
to promote robustness and fairness studies on the critical area of legal NLP.
  • Lisans : Bilinen lisans yok
  • Sürüm : 1.0.0
  • Bölünmeler :
Bölmek Örnekler
'test' 812
'train' 3072
'validation' 408
  • Özellikler :
{
    "id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "year": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 2,
        "names": [
            "dismissal",
            "approval"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "language": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "region": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "canton": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "legal area": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

tüm_diller

Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:

ds = tfds.load('huggingface:swiss_judgment_prediction/all_languages')
  • Tanım :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.  
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,  
to promote robustness and fairness studies on the critical area of legal NLP.
  • Lisans : Bilinen lisans yok
  • Sürüm : 1.0.0
  • Bölünmeler :
Bölmek Örnekler
'test' 17357
'train' 59709
'validation' 8208
  • Özellikler :
{
    "id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "year": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 2,
        "names": [
            "dismissal",
            "approval"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "language": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "region": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "canton": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "legal area": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}