Referensi:
de
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:swiss_judgment_prediction/de')
- Keterangan :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,
to promote robustness and fairness studies on the critical area of legal NLP.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 9725 |
'train' | 35458 |
'validation' | 4705 |
- Fitur :
{
"id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"year": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"dismissal",
"approval"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"language": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"region": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"canton": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"legal area": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
NS
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:swiss_judgment_prediction/fr')
- Keterangan :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,
to promote robustness and fairness studies on the critical area of legal NLP.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 6820 |
'train' | 21179 |
'validation' | 3095 |
- Fitur :
{
"id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"year": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"dismissal",
"approval"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"language": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"region": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"canton": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"legal area": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
dia
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:swiss_judgment_prediction/it')
- Keterangan :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,
to promote robustness and fairness studies on the critical area of legal NLP.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 812 |
'train' | 3072 |
'validation' | 408 |
- Fitur :
{
"id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"year": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"dismissal",
"approval"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"language": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"region": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"canton": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"legal area": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
semua_bahasa
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:swiss_judgment_prediction/all_languages')
- Keterangan :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,
to promote robustness and fairness studies on the critical area of legal NLP.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 17357 |
'train' | 59709 |
'validation' | 8208 |
- Fitur :
{
"id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"year": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"dismissal",
"approval"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"language": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"region": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"canton": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"legal area": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
Referensi:
de
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:swiss_judgment_prediction/de')
- Keterangan :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,
to promote robustness and fairness studies on the critical area of legal NLP.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 9725 |
'train' | 35458 |
'validation' | 4705 |
- Fitur :
{
"id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"year": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"dismissal",
"approval"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"language": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"region": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"canton": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"legal area": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
NS
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:swiss_judgment_prediction/fr')
- Keterangan :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,
to promote robustness and fairness studies on the critical area of legal NLP.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 6820 |
'train' | 21179 |
'validation' | 3095 |
- Fitur :
{
"id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"year": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"dismissal",
"approval"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"language": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"region": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"canton": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"legal area": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
dia
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:swiss_judgment_prediction/it')
- Keterangan :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,
to promote robustness and fairness studies on the critical area of legal NLP.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 812 |
'train' | 3072 |
'validation' | 408 |
- Fitur :
{
"id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"year": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"dismissal",
"approval"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"language": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"region": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"canton": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"legal area": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
semua_bahasa
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:swiss_judgment_prediction/all_languages')
- Keterangan :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,
to promote robustness and fairness studies on the critical area of legal NLP.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 17357 |
'train' | 59709 |
'validation' | 8208 |
- Fitur :
{
"id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"year": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"dismissal",
"approval"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"language": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"region": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"canton": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"legal area": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}