svhn

مراجع:

full_numbers

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:svhn/full_numbers')
  • وصف :
SVHN is a real-world image dataset for developing machine learning and object recognition algorithms with minimal requirement on data preprocessing and formatting.
It can be seen as similar in flavor to MNIST (e.g., the images are of small cropped digits), but incorporates an order of magnitude more labeled data (over 600,000 digit images)
and comes from a significantly harder, unsolved, real world problem (recognizing digits and numbers in natural scene images). SVHN is obtained from house numbers in Google Street View images.
  • الترخيص : مخصص (غير تجاري)
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'extra' 202353
'test' 13068
'train' 33402
  • سمات :
{
    "image": {
        "id": null,
        "_type": "Image"
    },
    "digits": {
        "feature": {
            "bbox": {
                "feature": {
                    "dtype": "int32",
                    "id": null,
                    "_type": "Value"
                },
                "length": 4,
                "id": null,
                "_type": "Sequence"
            },
            "label": {
                "num_classes": 10,
                "names": [
                    "0",
                    "1",
                    "2",
                    "3",
                    "4",
                    "5",
                    "6",
                    "7",
                    "8",
                    "9"
                ],
                "names_file": null,
                "id": null,
                "_type": "ClassLabel"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

اقتصاص_أرقام

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:svhn/cropped_digits')
  • وصف :
SVHN is a real-world image dataset for developing machine learning and object recognition algorithms with minimal requirement on data preprocessing and formatting.
It can be seen as similar in flavor to MNIST (e.g., the images are of small cropped digits), but incorporates an order of magnitude more labeled data (over 600,000 digit images)
and comes from a significantly harder, unsolved, real world problem (recognizing digits and numbers in natural scene images). SVHN is obtained from house numbers in Google Street View images.
  • الترخيص : مخصص (غير تجاري)
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'extra' 531131
'test' 26032
'train' 73257
  • سمات :
{
    "image": {
        "id": null,
        "_type": "Image"
    },
    "label": {
        "num_classes": 10,
        "names": [
            "0",
            "1",
            "2",
            "3",
            "4",
            "5",
            "6",
            "7",
            "8",
            "9"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}