분대교대

참고자료:

new_wiki

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:squadshifts/new_wiki')
  • 설명 :
SquadShifts consists of four new test sets for the Stanford Question Answering Dataset (SQuAD) from four different domains: Wikipedia articles, New York \ 
Times articles, Reddit comments, and Amazon product reviews. Each dataset was generated using the same data generating pipeline, Amazon Mechanical Turk interface, and data cleaning code as the original SQuAD v1.1 dataset. The "new-wikipedia" dataset measures overfitting on the original SQuAD v1.1 dataset.  The "new-york-times", "reddit", and "amazon" datasets measure robustness to natural distribution shifts. We encourage SQuAD model developers to also evaluate their methods on these new datasets!
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 1.0.0
  • 분할 :
나뉘다
'test' 7938
  • 특징 :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

아니

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:squadshifts/nyt')
  • 설명 :
SquadShifts consists of four new test sets for the Stanford Question Answering Dataset (SQuAD) from four different domains: Wikipedia articles, New York \ 
Times articles, Reddit comments, and Amazon product reviews. Each dataset was generated using the same data generating pipeline, Amazon Mechanical Turk interface, and data cleaning code as the original SQuAD v1.1 dataset. The "new-wikipedia" dataset measures overfitting on the original SQuAD v1.1 dataset.  The "new-york-times", "reddit", and "amazon" datasets measure robustness to natural distribution shifts. We encourage SQuAD model developers to also evaluate their methods on these new datasets!
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 1.0.0
  • 분할 :
나뉘다
'test' 10065
  • 특징 :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

레딧

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:squadshifts/reddit')
  • 설명 :
SquadShifts consists of four new test sets for the Stanford Question Answering Dataset (SQuAD) from four different domains: Wikipedia articles, New York \ 
Times articles, Reddit comments, and Amazon product reviews. Each dataset was generated using the same data generating pipeline, Amazon Mechanical Turk interface, and data cleaning code as the original SQuAD v1.1 dataset. The "new-wikipedia" dataset measures overfitting on the original SQuAD v1.1 dataset.  The "new-york-times", "reddit", and "amazon" datasets measure robustness to natural distribution shifts. We encourage SQuAD model developers to also evaluate their methods on these new datasets!
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 1.0.0
  • 분할 :
나뉘다
'test' 9803
  • 특징 :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

아마존

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:squadshifts/amazon')
  • 설명 :
SquadShifts consists of four new test sets for the Stanford Question Answering Dataset (SQuAD) from four different domains: Wikipedia articles, New York \ 
Times articles, Reddit comments, and Amazon product reviews. Each dataset was generated using the same data generating pipeline, Amazon Mechanical Turk interface, and data cleaning code as the original SQuAD v1.1 dataset. The "new-wikipedia" dataset measures overfitting on the original SQuAD v1.1 dataset.  The "new-york-times", "reddit", and "amazon" datasets measure robustness to natural distribution shifts. We encourage SQuAD model developers to also evaluate their methods on these new datasets!
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 1.0.0
  • 분할 :
나뉘다
'test' 9885
  • 특징 :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}