Références :
squad_adversarial
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:squad_adversarial/squad_adversarial')
- Description :
Here are two different adversaries, each of which uses a different procedure to pick the sentence it adds to the paragraph:
AddSent: Generates up to five candidate adversarial sentences that don't answer the question, but have a lot of words in common with the question. Picks the one that most confuses the model.
AddOneSent: Similar to AddSent, but just picks one of the candidate sentences at random. This adversary is does not query the model in any way.
- Licence : Licence MIT
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'AddOneSent' | 1787 |
'AddSent' | 3560 |
- Caractéristiques :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
AjouterEnvoyé
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:squad_adversarial/AddSent')
- Description :
Here are two different adversaries, each of which uses a different procedure to pick the sentence it adds to the paragraph:
AddSent: Generates up to five candidate adversarial sentences that don't answer the question, but have a lot of words in common with the question. Picks the one that most confuses the model.
AddOneSent: Similar to AddSent, but just picks one of the candidate sentences at random. This adversary is does not query the model in any way.
- Licence : Licence MIT
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'validation' | 3560 |
- Caractéristiques :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
AjouterUnEnvoyé
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:squad_adversarial/AddOneSent')
- Description :
Here are two different adversaries, each of which uses a different procedure to pick the sentence it adds to the paragraph:
AddSent: Generates up to five candidate adversarial sentences that don't answer the question, but have a lot of words in common with the question. Picks the one that most confuses the model.
AddOneSent: Similar to AddSent, but just picks one of the candidate sentences at random. This adversary is does not query the model in any way.
- Licence : Licence MIT
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'validation' | 1787 |
- Caractéristiques :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}