Referencje:
Medhop
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:qangaroo/medhop')
- Opis :
We have created two new Reading Comprehension datasets focussing on multi-hop (alias multi-step) inference.
Several pieces of information often jointly imply another fact. In multi-hop inference, a new fact is derived by combining facts via a chain of multiple steps.
Our aim is to build Reading Comprehension methods that perform multi-hop inference on text, where individual facts are spread out across different documents.
The two QAngaroo datasets provide a training and evaluation resource for such methods.
- Licencja : Brak znanej licencji
- Wersja : 1.0.0
- Podziały :
Podział | Przykłady |
---|---|
'train' | 1620 |
'validation' | 342 |
- Cechy :
{
"query": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"supports": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"candidates": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
zamaskowany_medhop
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:qangaroo/masked_medhop')
- Opis :
We have created two new Reading Comprehension datasets focussing on multi-hop (alias multi-step) inference.
Several pieces of information often jointly imply another fact. In multi-hop inference, a new fact is derived by combining facts via a chain of multiple steps.
Our aim is to build Reading Comprehension methods that perform multi-hop inference on text, where individual facts are spread out across different documents.
The two QAngaroo datasets provide a training and evaluation resource for such methods.
- Licencja : Brak znanej licencji
- Wersja : 1.0.0
- Podziały :
Podział | Przykłady |
---|---|
'train' | 1620 |
'validation' | 342 |
- Cechy :
{
"query": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"supports": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"candidates": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
wikihop
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:qangaroo/wikihop')
- Opis :
We have created two new Reading Comprehension datasets focussing on multi-hop (alias multi-step) inference.
Several pieces of information often jointly imply another fact. In multi-hop inference, a new fact is derived by combining facts via a chain of multiple steps.
Our aim is to build Reading Comprehension methods that perform multi-hop inference on text, where individual facts are spread out across different documents.
The two QAngaroo datasets provide a training and evaluation resource for such methods.
- Licencja : Brak znanej licencji
- Wersja : 1.0.0
- Podziały :
Podział | Przykłady |
---|---|
'train' | 43738 |
'validation' | 5129 |
- Cechy :
{
"query": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"supports": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"candidates": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
masked_wikihop
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:qangaroo/masked_wikihop')
- Opis :
We have created two new Reading Comprehension datasets focussing on multi-hop (alias multi-step) inference.
Several pieces of information often jointly imply another fact. In multi-hop inference, a new fact is derived by combining facts via a chain of multiple steps.
Our aim is to build Reading Comprehension methods that perform multi-hop inference on text, where individual facts are spread out across different documents.
The two QAngaroo datasets provide a training and evaluation resource for such methods.
- Licencja : Brak znanej licencji
- Wersja : 1.0.0
- Podziały :
Podział | Przykłady |
---|---|
'train' | 43738 |
'validation' | 5129 |
- Cechy :
{
"query": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"supports": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"candidates": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}