References:
verifiability
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/verifiability')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
2424 |
'train' |
5712 |
'validation' |
634 |
- Features:
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"experiential",
"unverifiable",
"non-experiential"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
emobank-arousal
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/emobank-arousal')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
683 |
'train' |
5470 |
'validation' |
684 |
- Features:
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"low",
"high"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
switchboard
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/switchboard')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
649 |
'train' |
18930 |
'validation' |
2113 |
- Features:
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 41,
"names": [
"Response Acknowledgement",
"Uninterpretable",
"Or-Clause",
"Reject",
"Statement-non-opinion",
"3rd-party-talk",
"Repeat-phrase",
"Hold Before Answer/Agreement",
"Signal-non-understanding",
"Offers, Options Commits",
"Agree/Accept",
"Dispreferred Answers",
"Hedge",
"Action-directive",
"Tag-Question",
"Self-talk",
"Yes-No-Question",
"Rhetorical-Question",
"No Answers",
"Open-Question",
"Conventional-closing",
"Other Answers",
"Acknowledge (Backchannel)",
"Wh-Question",
"Declarative Wh-Question",
"Thanking",
"Yes Answers",
"Affirmative Non-yes Answers",
"Declarative Yes-No-Question",
"Backchannel in Question Form",
"Apology",
"Downplayer",
"Conventional-opening",
"Collaborative Completion",
"Summarize/Reformulate",
"Negative Non-no Answers",
"Statement-opinion",
"Appreciation",
"Other",
"Quotation",
"Maybe/Accept-part"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
persuasiveness-eloquence
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/persuasiveness-eloquence')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
90 |
'train' |
725 |
'validation' |
91 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"low",
"high"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
mrda
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/mrda')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
6459 |
'train' |
14484 |
'validation' |
1630 |
- Features:
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 51,
"names": [
"Declarative-Question",
"Statement",
"Reject",
"Or-Clause",
"3rd-party-talk",
"Continuer",
"Hold Before Answer/Agreement",
"Assessment/Appreciation",
"Signal-non-understanding",
"Floor Holder",
"Sympathy",
"Dispreferred Answers",
"Reformulate/Summarize",
"Exclamation",
"Interrupted/Abandoned/Uninterpretable",
"Expansions of y/n Answers",
"Action-directive",
"Tag-Question",
"Accept",
"Rhetorical-question Continue",
"Self-talk",
"Rhetorical-Question",
"Yes-No-question",
"Open-Question",
"Rising Tone",
"Other Answers",
"Commit",
"Wh-Question",
"Repeat",
"Follow Me",
"Thanking",
"Offer",
"About-task",
"Reject-part",
"Affirmative Non-yes Answers",
"Apology",
"Downplayer",
"Humorous Material",
"Accept-part",
"Collaborative Completion",
"Mimic Other",
"Understanding Check",
"Misspeak Self-Correction",
"Or-Question",
"Topic Change",
"Negative Non-no Answers",
"Floor Grabber",
"Correct-misspeaking",
"Maybe",
"Acknowledge-answer",
"Defending/Explanation"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
gum
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/gum')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
248 |
'train' |
1700 |
'validation' |
259 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 17,
"names": [
"preparation",
"evaluation",
"circumstance",
"solutionhood",
"justify",
"result",
"evidence",
"purpose",
"concession",
"elaboration",
"background",
"condition",
"cause",
"restatement",
"motivation",
"antithesis",
"no_relation"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
emergent
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/emergent')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
259 |
'train' |
2076 |
'validation' |
259 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"observing",
"for",
"against"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
persuasiveness-relevance
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/persuasiveness-relevance')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
90 |
'train' |
725 |
'validation' |
91 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"low",
"high"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
persuasiveness-specificity
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/persuasiveness-specificity')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
62 |
'train' |
504 |
'validation' |
62 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"low",
"high"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
persuasiveness-strength
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/persuasiveness-strength')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
46 |
'train' |
371 |
'validation' |
46 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"low",
"high"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
emobank-dominance
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/emobank-dominance')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
798 |
'train' |
6392 |
'validation' |
798 |
- Features:
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"low",
"high"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
squinky-implicature
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/squinky-implicature')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
465 |
'train' |
3724 |
'validation' |
465 |
- Features:
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"low",
"high"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
sarcasm
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/sarcasm')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
469 |
'train' |
3754 |
'validation' |
469 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"notsarc",
"sarc"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
squinky-formality
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/squinky-formality')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
452 |
'train' |
3622 |
'validation' |
453 |
- Features:
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"low",
"high"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
stac
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/stac')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
1304 |
'train' |
11230 |
'validation' |
1247 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 18,
"names": [
"Comment",
"Contrast",
"Q_Elab",
"Parallel",
"Explanation",
"Narration",
"Continuation",
"Result",
"Acknowledgement",
"Alternation",
"Question_answer_pair",
"Correction",
"Clarification_question",
"Conditional",
"Sequence",
"Elaboration",
"Background",
"no_relation"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
pdtb
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/pdtb')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
1085 |
'train' |
12907 |
'validation' |
1204 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 16,
"names": [
"Synchrony",
"Contrast",
"Asynchronous",
"Conjunction",
"List",
"Condition",
"Pragmatic concession",
"Restatement",
"Pragmatic cause",
"Alternative",
"Pragmatic condition",
"Pragmatic contrast",
"Instantiation",
"Exception",
"Cause",
"Concession"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
persuasiveness-premisetype
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/persuasiveness-premisetype')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
70 |
'train' |
566 |
'validation' |
71 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 8,
"names": [
"testimony",
"warrant",
"invented_instance",
"common_knowledge",
"statistics",
"analogy",
"definition",
"real_example"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
squinky-informativeness
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/squinky-informativeness')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
464 |
'train' |
3719 |
'validation' |
465 |
- Features:
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"low",
"high"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
persuasiveness-claimtype
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/persuasiveness-claimtype')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
19 |
'train' |
160 |
'validation' |
20 |
- Features:
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"Value",
"Fact",
"Policy"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
emobank-valence
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:pragmeval/emobank-valence')
- Description:
Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
643 |
'train' |
5150 |
'validation' |
644 |
- Features:
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 2,
"names": [
"low",
"high"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}