polyglot_ner

References:

ca

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/ca')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 372665
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

de

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/de')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 547578
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

es

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/es')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 386699
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

fi

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/fi')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 387465
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

hi

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/hi')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 401648
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

id

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/id')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 463862
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

ko

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/ko')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 560105
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

ms

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/ms')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 528181
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

pl

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/pl')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 623267
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

ru

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/ru')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 551770
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

sr

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/sr')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 559423
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

tl

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/tl')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 160750
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

vi

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/vi')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 351643
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

ar

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/ar')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 339109
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

cs

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/cs')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 564462
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

el

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/el')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 446052
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

et

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/et')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 87023
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

fr

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/fr')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 418411
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

hr

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/hr')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 629667
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

it

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/it')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 378325
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

lt

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/lt')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 848018
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

nl

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/nl')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 520664
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

pt

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/pt')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 396773
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

sk

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/sk')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 500135
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

sv

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/sv')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 634881
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

tr

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/tr')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 607324
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

zh

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/zh')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 1570853
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

bg

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/bg')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 559694
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

da

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/da')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 546440
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

en

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/en')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 423982
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

fa

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/fa')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 492903
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

he

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/he')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 459933
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

hu

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/hu')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 590218
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

ja

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/ja')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 1691018
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

lv

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/lv')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 331568
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

no

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/no')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 552176
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

ro

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/ro')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 285985
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

sl

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/sl')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 521251
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

th

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/th')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 217631
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

uk

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/uk')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 561373
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

combined

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:polyglot_ner/combined')
  • Description:
Polyglot-NER
A training dataset automatically generated from Wikipedia and Freebase the task
of named entity recognition. The dataset contains the basic Wikipedia based
training data for 40 languages we have (with coreference resolution) for the task of
named entity recognition. The details of the procedure of generating them is outlined in
Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
corresponding to a different language. For example, "es" includes only spanish examples.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 21070925
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lang": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}