सन्दर्भ:
डे
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:mlsum/de')
- विवरण :
We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.
Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.
Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.
We report cross-lingual comparative analyses based on state-of-the-art systems.
These highlight existing biases which motivate the use of a multi-lingual dataset.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10701 |
'train' | 220887 |
'validation' | 11394 |
- विशेषताएँ :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"summary": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"topic": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"date": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
तों
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:mlsum/es')
- विवरण :
We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.
Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.
Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.
We report cross-lingual comparative analyses based on state-of-the-art systems.
These highlight existing biases which motivate the use of a multi-lingual dataset.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 13920 |
'train' | 266367 |
'validation' | 10358 |
- विशेषताएँ :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"summary": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"topic": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"date": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
फादर
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:mlsum/fr')
- विवरण :
We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.
Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.
Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.
We report cross-lingual comparative analyses based on state-of-the-art systems.
These highlight existing biases which motivate the use of a multi-lingual dataset.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 15828 |
'train' | 392902 |
'validation' | 16059 |
- विशेषताएँ :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"summary": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"topic": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"date": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
आरयू
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:mlsum/ru')
- विवरण :
We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.
Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.
Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.
We report cross-lingual comparative analyses based on state-of-the-art systems.
These highlight existing biases which motivate the use of a multi-lingual dataset.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 757 |
'train' | 25556 |
'validation' | 750 |
- विशेषताएँ :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"summary": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"topic": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"date": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
तू
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:mlsum/tu')
- विवरण :
We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.
Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.
Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.
We report cross-lingual comparative analyses based on state-of-the-art systems.
These highlight existing biases which motivate the use of a multi-lingual dataset.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 12775 |
'train' | 249277 |
'validation' | 11565 |
- विशेषताएँ :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"summary": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"topic": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"date": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}