তথ্যসূত্র:
mlqa-translate-train.ar
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.ar')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'train' | 78058 |
'validation' | 9512 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-train.de
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.de')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'train' | 80069 |
'validation' | 9927 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-train.vi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.vi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'train' | 84816 |
'validation' | 10356 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-train.zh
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.zh')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'train' | 76285 |
'validation' | 9568 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-train.es
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.es')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'train' | 81810 |
'validation' | 10123 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-train.hi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.hi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'train' | 82451 |
'validation' | 10253 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.ar
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.ar')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5335 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.de
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.de')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 4517 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.vi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.vi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5495 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.zh
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.zh')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5137 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.es
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.es')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5253 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.hi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.hi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 4918 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.ar
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.ar.ar')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5335 |
'validation' | 517 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.de
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.ar.de')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1649 |
'validation' | 207 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.vi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.ar.vi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 2047 |
'validation' | 163 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.zh
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.ar.zh')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1912 |
'validation' | 188 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.en
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.ar.en')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5335 |
'validation' | 517 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.es
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.ar.es')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1978 |
'validation' | 161 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.hi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.ar.hi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1831 |
'validation' | 186 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.ar
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.de.ar')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1649 |
'validation' | 207 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.de
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.de.de')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 4517 |
'validation' | 512 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.vi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.de.vi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1675 |
'validation' | 182 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.zh
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.de.zh')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1621 |
'validation' | 190 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.en
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.de.en')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 4517 |
'validation' | 512 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.es
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.de.es')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1776 |
'validation' | 196 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.hi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.de.hi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1430 |
'validation' | 163 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.ar
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.vi.ar')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 2047 |
'validation' | 163 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.de
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.vi.de')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1675 |
'validation' | 182 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.vi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.vi.vi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5495 |
'validation' | 511 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.zh
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.vi.zh')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1943 |
'validation' | 184 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.en
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.vi.en')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5495 |
'validation' | 511 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.es
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.vi.es')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 2018 |
'validation' | 189 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.hi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.vi.hi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1947 |
'validation' | 177 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.zh.ar
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.zh.ar')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1912 |
'validation' | 188 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.zh.de
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.zh.de')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1621 |
'validation' | 190 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.zh.vi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.zh.vi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1943 |
'validation' | 184 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.zh.zh
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.zh.zh')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5137 |
'validation' | 504 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.zh.en
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.zh.en')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5137 |
'validation' | 504 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.zh.es
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.zh.es')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1947 |
'validation' | 161 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.zh.hi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.zh.hi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1767 |
'validation' | 189 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.en.ar
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.en.ar')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5335 |
'validation' | 517 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.en.de
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.en.de')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 4517 |
'validation' | 512 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.en.vi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.en.vi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5495 |
'validation' | 511 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.en.zh
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.en.zh')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5137 |
'validation' | 504 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.en.en
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.en.en')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 11590 |
'validation' | 1148 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.en.es
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.en.es')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5253 |
'validation' | 500 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.en.hi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.en.hi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 4918 |
'validation' | 507 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.es.ar
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.es.ar')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1978 |
'validation' | 161 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.es.de
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.es.de')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1776 |
'validation' | 196 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.es.vi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.es.vi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 2018 |
'validation' | 189 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.es.zh
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.es.zh')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1947 |
'validation' | 161 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.es.en
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.es.en')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5253 |
'validation' | 500 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.es.es
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.es.es')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 5253 |
'validation' | 500 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.es.hi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.es.hi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1723 |
'validation' | 187 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.hi.ar
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.hi.ar')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1831 |
'validation' | 186 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.hi.de
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.hi.de')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1430 |
'validation' | 163 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.hi.vi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.hi.vi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1947 |
'validation' | 177 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.hi.zh
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.hi.zh')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1767 |
'validation' | 189 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.hi.en
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.hi.en')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 4918 |
'validation' | 507 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.hi.es
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.hi.es')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 1723 |
'validation' | 187 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.hi.hi
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:mlqa/mlqa.hi.hi')
- বর্ণনা :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 1.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'test' | 4918 |
'validation' | 507 |
- বৈশিষ্ট্য :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}