Referencias:
Diana
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:miam/dihana')
- Descripción :
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and
analyzing natural language understanding systems specifically designed for spoken language. Datasets
are in English, French, German, Italian and Spanish. They cover a variety of domains including
spontaneous speech, scripted scenarios, and joint task completion. Some datasets additionally include
emotion and/or sentimant labels.
- Licencia : Sin licencia conocida
- Versión : 1.0.0
- Divisiones :
Separar | Ejemplos |
---|---|
'test' | 2361 |
'train' | 19063 |
'validation' | 2123 |
- Características :
{
"Speaker": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Utterance": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Dialogue_Act": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Dialogue_ID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"File_ID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Label": {
"num_classes": 11,
"names": [
"Afirmacion",
"Apertura",
"Cierre",
"Confirmacion",
"Espera",
"Indefinida",
"Negacion",
"No_entendido",
"Nueva_consulta",
"Pregunta",
"Respuesta"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"Idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
escucho
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:miam/ilisten')
- Descripción :
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and
analyzing natural language understanding systems specifically designed for spoken language. Datasets
are in English, French, German, Italian and Spanish. They cover a variety of domains including
spontaneous speech, scripted scenarios, and joint task completion. Some datasets additionally include
emotion and/or sentimant labels.
- Licencia : Sin licencia conocida
- Versión : 1.0.0
- Divisiones :
Separar | Ejemplos |
---|---|
'test' | 971 |
'train' | 1986 |
'validation' | 230 |
- Características :
{
"Speaker": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Utterance": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Dialogue_Act": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Dialogue_ID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Label": {
"num_classes": 15,
"names": [
"AGREE",
"ANSWER",
"CLOSING",
"ENCOURAGE-SORRY",
"GENERIC-ANSWER",
"INFO-REQUEST",
"KIND-ATTITUDE_SMALL-TALK",
"OFFER-GIVE-INFO",
"OPENING",
"PERSUASION-SUGGEST",
"QUESTION",
"REJECT",
"SOLICITATION-REQ_CLARIFICATION",
"STATEMENT",
"TALK-ABOUT-SELF"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"Idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
loria
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:miam/loria')
- Descripción :
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and
analyzing natural language understanding systems specifically designed for spoken language. Datasets
are in English, French, German, Italian and Spanish. They cover a variety of domains including
spontaneous speech, scripted scenarios, and joint task completion. Some datasets additionally include
emotion and/or sentimant labels.
- Licencia : Sin licencia conocida
- Versión : 1.0.0
- Divisiones :
Separar | Ejemplos |
---|---|
'test' | 1047 |
'train' | 8465 |
'validation' | 942 |
- Características :
{
"Speaker": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Utterance": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Dialogue_Act": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Dialogue_ID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"File_ID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Label": {
"num_classes": 31,
"names": [
"ack",
"ask",
"find_mold",
"find_plans",
"first_step",
"greet",
"help",
"inform",
"inform_engine",
"inform_job",
"inform_material_space",
"informer_conditioner",
"informer_decoration",
"informer_elcomps",
"informer_end_manufacturing",
"kindAtt",
"manufacturing_reqs",
"next_step",
"no",
"other",
"quality_control",
"quit",
"reqRep",
"security_policies",
"staff_enterprise",
"staff_job",
"studies_enterprise",
"studies_job",
"todo_failure",
"todo_irreparable",
"yes"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"Idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
tarea del mapa
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:miam/maptask')
- Descripción :
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and
analyzing natural language understanding systems specifically designed for spoken language. Datasets
are in English, French, German, Italian and Spanish. They cover a variety of domains including
spontaneous speech, scripted scenarios, and joint task completion. Some datasets additionally include
emotion and/or sentimant labels.
- Licencia : Sin licencia conocida
- Versión : 1.0.0
- Divisiones :
Separar | Ejemplos |
---|---|
'test' | 5335 |
'train' | 25382 |
'validation' | 5221 |
- Características :
{
"Speaker": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Utterance": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Dialogue_Act": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Dialogue_ID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"File_ID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Label": {
"num_classes": 12,
"names": [
"acknowledge",
"align",
"check",
"clarify",
"explain",
"instruct",
"query_w",
"query_yn",
"ready",
"reply_n",
"reply_w",
"reply_y"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"Idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
vm2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:miam/vm2')
- Descripción :
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and
analyzing natural language understanding systems specifically designed for spoken language. Datasets
are in English, French, German, Italian and Spanish. They cover a variety of domains including
spontaneous speech, scripted scenarios, and joint task completion. Some datasets additionally include
emotion and/or sentimant labels.
- Licencia : Sin licencia conocida
- Versión : 1.0.0
- Divisiones :
Separar | Ejemplos |
---|---|
'test' | 2855 |
'train' | 25060 |
'validation' | 2860 |
- Características :
{
"Utterance": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Dialogue_Act": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Speaker": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Dialogue_ID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"Label": {
"num_classes": 31,
"names": [
"ACCEPT",
"BACKCHANNEL",
"BYE",
"CLARIFY",
"CLOSE",
"COMMIT",
"CONFIRM",
"DEFER",
"DELIBERATE",
"DEVIATE_SCENARIO",
"EXCLUDE",
"EXPLAINED_REJECT",
"FEEDBACK",
"FEEDBACK_NEGATIVE",
"FEEDBACK_POSITIVE",
"GIVE_REASON",
"GREET",
"INFORM",
"INIT",
"INTRODUCE",
"NOT_CLASSIFIABLE",
"OFFER",
"POLITENESS_FORMULA",
"REJECT",
"REQUEST",
"REQUEST_CLARIFY",
"REQUEST_COMMENT",
"REQUEST_COMMIT",
"REQUEST_SUGGEST",
"SUGGEST",
"THANK"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"Idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}