مراجع:
الكلمات الجنسانية
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:md_gender_bias/gendered_words')
- وصف :
Machine learning models are trained to find patterns in data.
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
- الترخيص : رخصة معهد ماساتشوستس للتكنولوجيا
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'train' | 222 |
- سمات :
{
"word_masculine": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"word_feminine": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
name_genders
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:md_gender_bias/name_genders')
- وصف :
Machine learning models are trained to find patterns in data.
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
- الترخيص : رخصة معهد ماساتشوستس للتكنولوجيا
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'yob1880' | 2000 |
'yob1881' | 1935 |
'yob1882' | 2127 |
'yob1883' | 2084 |
'yob1884' | 2297 |
'yob1885' | 2294 |
'yob1886' | 2392 |
'yob1887' | 2373 |
'yob1888' | 2651 |
'yob1889' | 2590 |
'yob1890' | 2695 |
'yob1891' | 2660 |
'yob1892' | 2921 |
'yob1893' | 2831 |
'yob1894' | 2941 |
'yob1895' | 3049 |
'yob1896' | 3091 |
'yob1897' | 3028 |
'yob1898' | 3264 |
'yob1899' | 3042 |
'yob1900' | 3730 |
'yob1901' | 3153 |
'yob1902' | 3362 |
'yob1903' | 3389 |
'yob1904' | 3560 |
'yob1905' | 3655 |
'yob1906' | 3633 |
'yob1907' | 3948 |
'yob1908' | 4018 |
'yob1909' | 4227 |
'yob1910' | 4629 |
'yob1911' | 4867 |
'yob1912' | 6351 |
'yob1913' | 6968 |
'yob1914' | 7965 |
'yob1915' | 9357 |
'yob1916' | 9696 |
'yob1917' | 9913 |
'yob1918' | 10398 |
'yob1919' | 10369 |
'yob1920' | 10756 |
'yob1921' | 10857 |
'yob1922' | 10756 |
'yob1923' | 10643 |
'yob1924' | 10869 |
'yob1925' | 10638 |
'yob1926' | 10458 |
'yob1927' | 10406 |
'yob1928' | 10159 |
'yob1929' | 9820 |
'yob1930' | 9791 |
'yob1931' | 9298 |
'yob1932' | 9381 |
'yob1933' | 9013 |
'yob1934' | 9180 |
'yob1935' | 9037 |
'yob1936' | 8894 |
'yob1937' | 8946 |
'yob1938' | 9032 |
'yob1939' | 8918 |
'yob1940' | 8961 |
'yob1941' | 9085 |
'yob1942' | 9425 |
'yob1943' | 9408 |
'yob1944' | 9152 |
'yob1945' | 9025 |
'yob1946' | 9705 |
'yob1947' | 10371 |
'yob1948' | 10241 |
'yob1949' | 10269 |
'yob1950' | 10303 |
'yob1951' | 10462 |
'yob1952' | 10646 |
'yob1953' | 10837 |
'yob1954' | 10968 |
'yob1955' | 11115 |
'yob1956' | 11340 |
'yob1957' | 11564 |
'yob1958' | 11522 |
'yob1959' | 11767 |
'yob1960' | 11921 |
'yob1961' | 12182 |
'yob1962' | 12209 |
'yob1963' | 12282 |
'yob1964' | 12397 |
'yob1965' | 11952 |
'yob1966' | 12151 |
'yob1967' | 12397 |
'yob1968' | 12936 |
'yob1969' | 13749 |
'yob1970' | 14779 |
'yob1971' | 15295 |
'yob1972' | 15412 |
'yob1973' | 15682 |
'yob1974' | 16249 |
'yob1975' | 16944 |
'yob1976' | 17391 |
'yob1977' | 18175 |
'yob1978' | 18231 |
'yob1979' | 19039 |
'yob1980' | 19452 |
'yob1981' | 19475 |
'yob1982' | 19694 |
'yob1983' | 19407 |
'yob1984' | 19506 |
'yob1985' | 20085 |
'yob1986' | 20657 |
'yob1987' | 21406 |
'yob1988' | 22367 |
'yob1989' | 23775 |
'yob1990' | 24716 |
'yob1991' | 25109 |
'yob1992' | 25427 |
'yob1993' | 25966 |
'yob1994' | 25997 |
'yob1995' | 26080 |
'yob1996' | 26423 |
'yob1997' | 26970 |
'yob1998' | 27902 |
'yob1999' | 28552 |
'yob2000' | 29772 |
'yob2001' | 30274 |
'yob2002' | 30564 |
'yob2003' | 31185 |
'yob2004' | 32048 |
'yob2005' | 32549 |
'yob2006' | 34088 |
'yob2007' | 34961 |
'yob2008' | 35079 |
'yob2009' | 34709 |
'yob2010' | 34073 |
'yob2011' | 33908 |
'yob2012' | 33747 |
'yob2013' | 33282 |
'yob2014' | 33243 |
'yob2015' | 33121 |
'yob2016' | 33010 |
'yob2017' | 32590 |
'yob2018' | 32033 |
- سمات :
{
"name": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"assigned_gender": {
"num_classes": 2,
"names": [
"M",
"F"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"count": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
new_data
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:md_gender_bias/new_data')
- وصف :
Machine learning models are trained to find patterns in data.
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
- الترخيص : رخصة معهد ماساتشوستس للتكنولوجيا
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'train' | 2345 |
- سمات :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": [
{
"num_classes": 6,
"names": [
"ABOUT:female",
"ABOUT:male",
"PARTNER:female",
"PARTNER:male",
"SELF:female",
"SELF:male"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
],
"class_type": {
"num_classes": 3,
"names": [
"about",
"partner",
"self"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"turker_gender": {
"num_classes": 5,
"names": [
"man",
"woman",
"nonbinary",
"prefer not to say",
"no answer"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"episode_done": {
"dtype": "bool_",
"id": null,
"_type": "Value"
},
"confidence": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
funpedia
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:md_gender_bias/funpedia')
- وصف :
Machine learning models are trained to find patterns in data.
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
- الترخيص : رخصة معهد ماساتشوستس للتكنولوجيا
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 2938 |
'train' | 23897 |
'validation' | 2984 |
- سمات :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"persona": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gender": {
"num_classes": 3,
"names": [
"gender-neutral",
"female",
"male"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
}
image_chat
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:md_gender_bias/image_chat')
- وصف :
Machine learning models are trained to find patterns in data.
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
- الترخيص : رخصة معهد ماساتشوستس للتكنولوجيا
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 5000 |
'train' | 9997 |
'validation' | 338180 |
- سمات :
{
"caption": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"male": {
"dtype": "bool_",
"id": null,
"_type": "Value"
},
"female": {
"dtype": "bool_",
"id": null,
"_type": "Value"
}
}
معالج
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:md_gender_bias/wizard')
- وصف :
Machine learning models are trained to find patterns in data.
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
- الترخيص : رخصة معهد ماساتشوستس للتكنولوجيا
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 470 |
'train' | 10449 |
'validation' | 537 |
- سمات :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"chosen_topic": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gender": {
"num_classes": 3,
"names": [
"gender-neutral",
"female",
"male"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
}
convai2_inferred
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:md_gender_bias/convai2_inferred')
- وصف :
Machine learning models are trained to find patterns in data.
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
- الترخيص : رخصة معهد ماساتشوستس للتكنولوجيا
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 7801 |
'train' | 131438 |
'validation' | 7801 |
- سمات :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"binary_label": {
"num_classes": 2,
"names": [
"ABOUT:female",
"ABOUT:male"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"binary_score": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"ternary_label": {
"num_classes": 3,
"names": [
"ABOUT:female",
"ABOUT:male",
"ABOUT:gender-neutral"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"ternary_score": {
"dtype": "float32",
"id": null,
"_type": "Value"
}
}
light_inferred
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:md_gender_bias/light_inferred')
- وصف :
Machine learning models are trained to find patterns in data.
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
- الترخيص : رخصة معهد ماساتشوستس للتكنولوجيا
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 12765 |
'train' | 106122 |
'validation' | 6362 |
- سمات :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"binary_label": {
"num_classes": 2,
"names": [
"ABOUT:female",
"ABOUT:male"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"binary_score": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"ternary_label": {
"num_classes": 3,
"names": [
"ABOUT:female",
"ABOUT:male",
"ABOUT:gender-neutral"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"ternary_score": {
"dtype": "float32",
"id": null,
"_type": "Value"
}
}
openubtitles_inferred
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:md_gender_bias/opensubtitles_inferred')
- وصف :
Machine learning models are trained to find patterns in data.
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
- الترخيص : رخصة معهد ماساتشوستس للتكنولوجيا
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 49108 |
'train' | 351036 |
'validation' | 41957 |
- سمات :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"binary_label": {
"num_classes": 2,
"names": [
"ABOUT:female",
"ABOUT:male"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"binary_score": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"ternary_label": {
"num_classes": 3,
"names": [
"ABOUT:female",
"ABOUT:male",
"ABOUT:gender-neutral"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"ternary_score": {
"dtype": "float32",
"id": null,
"_type": "Value"
}
}
yelp_inferred
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:md_gender_bias/yelp_inferred')
- وصف :
Machine learning models are trained to find patterns in data.
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
- الترخيص : رخصة معهد ماساتشوستس للتكنولوجيا
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 534460 |
'train' | 2577862 |
'validation' | 4492 |
- سمات :
{
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"binary_label": {
"num_classes": 2,
"names": [
"ABOUT:female",
"ABOUT:male"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"binary_score": {
"dtype": "float32",
"id": null,
"_type": "Value"
}
}