อ้างอิง:
พีชคณิต__เชิงเส้น_1d
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พีชคณิต__เชิงเส้น_1d_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พีชคณิต__เชิงเส้น_2d
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พีชคณิต__เชิงเส้น_2d_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พีชคณิต__พหุนาม_ราก
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พีชคณิต__พหุนาม_roots_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พีชคณิต__ลำดับ_ถัดไป_term
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พีชคณิต__ลำดับ_nth_term
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เลขคณิต__add_or_sub
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เลขคณิต__add_or_sub_in_base
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เลขคณิต__add_sub_multiple
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เลขคณิต__div
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__div')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เลขคณิต__ผสม
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เลขคณิต__mul
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เลขคณิต__mul_div_multiple
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เลขคณิต__ใกล้ที่สุด_จำนวนเต็ม_root
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เลขคณิต__ลดความซับซ้อน_surd
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
แคลคูลัส__แตกต่าง
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
แคลคูลัส__differentiate_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
การเปรียบเทียบ__ใกล้เคียงที่สุด
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__closest')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
การเปรียบเทียบ__closest_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เปรียบเทียบ__kth_ใหญ่ที่สุด
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
เปรียบเทียบ__kth_biggest_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
การเปรียบเทียบ__คู่
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__pair')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
การเปรียบเทียบ__คู่_ประกอบ
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
การเปรียบเทียบ__เรียงลำดับ
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__sort')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
การเปรียบเทียบ__sort_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
การวัด__การแปลง
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/measurement__conversion')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
การวัด__เวลา
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/measurement__time')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__ฐาน_การแปลง
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__div_ส่วนที่เหลือ
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__div_remainder_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__gcd
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__gcd')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__gcd_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__is_factor
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__is_factor_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__is_prime
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__is_prime_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__lcm
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__lcm')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__lcm_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__list_prime_factors
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__list_prime_factors_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__สถานที่_ค่า
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__place_value')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__place_value_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ตัวเลข__รอบ_จำนวน
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__round_number')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__round_number_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พหุนาม__เพิ่ม
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__add')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พหุนาม__สัมประสิทธิ์_ชื่อ
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พหุนาม__รวบรวม
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__collect')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พหุนาม__เขียน
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__compose')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พหุนาม__ประเมิน
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พหุนาม__evaluate_composed
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พหุนาม__ขยาย
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__expand')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
พหุนาม__ลดความซับซ้อน_อำนาจ
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ความน่าจะเป็น__swr_p_level_set
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ความน่าจะเป็น__swr_p_sequence
ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:
ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
- คำอธิบาย :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
- เวอร์ชัน : 1.0.0
- แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 10,000 |
'train' | 1999998 |
- คุณสมบัติ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}