ชุดข้อมูลคณิตศาสตร์

อ้างอิง:

พีชคณิต__เชิงเส้น_1d

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พีชคณิต__เชิงเส้น_1d_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พีชคณิต__เชิงเส้น_2d

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พีชคณิต__เชิงเส้น_2d_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พีชคณิต__พหุนาม_ราก

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พีชคณิต__พหุนาม_roots_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พีชคณิต__ลำดับ_ถัดไป_term

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พีชคณิต__ลำดับ_nth_term

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เลขคณิต__add_or_sub

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เลขคณิต__add_or_sub_in_base

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เลขคณิต__add_sub_multiple

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เลขคณิต__div

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__div')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เลขคณิต__ผสม

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เลขคณิต__mul

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เลขคณิต__mul_div_multiple

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เลขคณิต__ใกล้ที่สุด_จำนวนเต็ม_root

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เลขคณิต__ลดความซับซ้อน_surd

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

แคลคูลัส__แตกต่าง

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

แคลคูลัส__differentiate_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

การเปรียบเทียบ__ใกล้เคียงที่สุด

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__closest')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

การเปรียบเทียบ__closest_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เปรียบเทียบ__kth_ใหญ่ที่สุด

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

เปรียบเทียบ__kth_biggest_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

การเปรียบเทียบ__คู่

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__pair')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

การเปรียบเทียบ__คู่_ประกอบ

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

การเปรียบเทียบ__เรียงลำดับ

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__sort')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

การเปรียบเทียบ__sort_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

การวัด__การแปลง

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/measurement__conversion')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

การวัด__เวลา

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/measurement__time')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__ฐาน_การแปลง

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__div_ส่วนที่เหลือ

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__div_remainder_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__gcd

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__gcd')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__gcd_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__is_factor

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__is_factor_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__is_prime

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__is_prime_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__lcm

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__lcm')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__lcm_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

number__list_prime_factors

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

number__list_prime_factors_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__สถานที่_ค่า

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__place_value')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

number__place_value_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ตัวเลข__รอบ_จำนวน

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__round_number')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

number__round_number_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พหุนาม__เพิ่ม

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__add')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พหุนาม__สัมประสิทธิ์_ชื่อ

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พหุนาม__รวบรวม

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__collect')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พหุนาม__เขียน

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__compose')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พหุนาม__ประเมิน

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พหุนาม__evaluate_composed

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พหุนาม__ขยาย

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__expand')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

พหุนาม__ลดความซับซ้อน_อำนาจ

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ความน่าจะเป็น__swr_p_level_set

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ความน่าจะเป็น__swr_p_sequence

ใช้คำสั่งต่อไปนี้เพื่อโหลดชุดข้อมูลนี้ใน TFDS:

ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
  • คำอธิบาย :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • ใบอนุญาต : ไม่มีใบอนุญาตที่รู้จัก
  • เวอร์ชัน : 1.0.0
  • แยก :
แยก ตัวอย่าง
'test' 10,000
'train' 1999998
  • คุณสมบัติ :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}