Referanslar:
cebir__doğrusal_1d
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
cebir__linear_1d_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
cebir__doğrusal_2d
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
cebir__linear_2d_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
cebir__polinom_kökleri
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
cebir__polinom_kökler_bileşimi
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
cebir__dizi_sonraki_terim
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
cebir__sekans_n'inci_terim
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
aritmetik__add_or_sub
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
aritmetik__add_or_sub_in_base
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
aritmetik__add_sub_multiple
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
aritmetik__div
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/arithmetic__div')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
aritmetik__karışık
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
aritmetik__mul
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
aritmetik__mul_div_multiple
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
aritmetik__en yakın_tamsayı_kökü
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
aritmetik__simplify_surd
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
hesap__farklılaştır
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
hesap__farklılaştırma_oluşturulmuş
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
karşılaştırma__en yakın
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/comparison__closest')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
karşılaştırma__en yakın_oluşturulmuş
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
karşılaştırma__kth_biggest
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
karşılaştırma__kth_biggest_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
karşılaştırma__çift
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/comparison__pair')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
karşılaştırma__çift_oluşturulmuş
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
karşılaştırma__sıralama
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/comparison__sort')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
karşılaştırma__sort_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ölçüm__dönüşüm
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/measurement__conversion')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ölçüm__zamanı
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/measurement__time')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__base_conversion
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__div_kalan
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__div_remainder_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__gcd
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__gcd')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__gcd_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__is_faktörü
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__is_factor_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__is_prime
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__is_prime_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__lcm
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__lcm')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__lcm_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__list_prime_factors
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__list_prime_factors_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__yer_değeri
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__place_value')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__place_value_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__yuvarlak_sayı
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__round_number')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sayılar__round_number_composed
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polinomlar__ekle
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/polynomials__add')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polinomlar__katsayı_adlandırılmış
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polinomlar__toplama
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/polynomials__collect')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polinomlar__oluştur
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/polynomials__compose')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polinomlar__değerlendirin
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polinomlar__değerlendirin_oluşturun
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polinomlar__expand
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/polynomials__expand')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polinomlar__simplify_power
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
olasılık__swr_p_level_set
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
olasılık__swr_p_sequence
Bu veri kümesini TFDS'ye yüklemek için aşağıdaki komutu kullanın:
ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
- Tanım :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Lisans : Bilinen lisans yok
- Sürüm : 1.0.0
- Bölünmeler :
Bölmek | Örnekler |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Özellikler :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}