kumpulan data_matematika

Referensi:

aljabar__linear_1d

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aljabar__linear_1d_compose

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aljabar__linear_2d

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aljabar__linear_2d_compose

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aljabar__polinomial_akar

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aljabar__polinomial_akar_tersusun

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aljabar__urutan_istilah_berikutnya

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aljabar__urutan_istilah_n

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aritmatika__tambahkan_atau_sub

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aritmatika__tambah_atau_sub_dalam_basis

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aritmatika__tambahkan_sub_multiple

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aritmatika__div

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__div')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aritmatika__campuran

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aritmatika__mul

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aritmatika__mul_div_multiple

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aritmatika__akar_bilangan_terdekat

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

aritmatika__simplify_surd

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

kalkulus__membedakan

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

kalkulus__membedakan_tersusun

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

perbandingan__terdekat

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__closest')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

perbandingan__terdekat_terdiri

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

perbandingan__kth_terbesar

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

perbandingan__kth_terbesar_terdiri

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

perbandingan__pasangan

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__pair')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

perbandingan__pasangan_terdiri

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

perbandingan__sort

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__sort')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

perbandingan__sort_compose

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pengukuran__konversi

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/measurement__conversion')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pengukuran__waktu

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/measurement__time')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__basis_konversi

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__div_sisa

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__div_sisa_komposisi

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__gcd

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__gcd')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__gcd_compose

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__adalah_faktor

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__adalah_faktor_terdiri

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__adalah_prime

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__adalah_prima_terdiri

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__lcm

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__lcm')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__lcm_komposisi

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__daftar_faktor_prima

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__daftar_prime_factors_compose

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__nilai_tempat

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__place_value')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__tempat_nilai_terdiri

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__angka_bulatan

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__round_number')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

angka__bulatan_angka_terdiri

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polinomial__tambahkan

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__add')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polinomial__nama_koefisien

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polinomial__kumpulkan

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__collect')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polinomial__komposisi

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__compose')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polinomial__evaluasi

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polinomial__evaluasi_terdiri

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polinomial__perluas

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__expand')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polinomial__menyederhanakan_kekuatan

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

probabilitas__swr_p_level_set

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

probabilitas__swr_p_urutan

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
  • Keterangan :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 10.000
'train' 1999998
  • Fitur :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}