सन्दर्भ:
बीजगणित__रैखिक_1d
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बीजगणित__रैखिक_1d_रचित
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बीजगणित__रैखिक_2d
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
algebra__linear_2d_composition
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बीजगणित__बहुपद_मूल
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बीजगणित__बहुपद_मूल_रचना
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बीजगणित_अनुक्रम_अगला_पद
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बीजगणित_क्रम_nवाँ_पद
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
अंकगणित__जोड़_या_उप
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
अंकगणित_जोड़ें_या_आधार_में_सब_करें
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
अंकगणित__जोड़ें_उप_एकाधिक
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
अंकगणित__div
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/arithmetic__div')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
अंकगणित__मिश्रित
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
अंकगणित_मूल
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
अंकगणित__mul_div_multiple
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
अंकगणित__निकटतम_पूर्णांक_मूल
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
अंकगणित__सरलीकरण_सरड
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
कलन_अंतर करें
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
कैलकुलस__डिफरेंशियेट_रचित
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
तुलना__निकटतम
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/comparison__closest')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
तुलना__निकटतम_रचित
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
तुलना__kth_सबसे बड़ा
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
तुलना__kth_biggest_composed
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
तुलना__जोड़ी
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/comparison__pair')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
तुलना__जोड़ी_रचना
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
तुलना__क्रम
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/comparison__sort')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
तुलना__सॉर्ट_रचना
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
माप_रूपांतरण
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/measurement__conversion')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
माप__समय
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/measurement__time')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
संख्या__आधार_रूपांतरण
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
संख्याएँ__div_शेष
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
संख्याएँ__div_remainder_composed
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
नंबर__जीसीडी
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__gcd')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
नंबर__gcd_composed
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
संख्या_कारक_है
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
संख्याएँ_कारक_संयोजित होती हैं
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
संख्याएँ_अभाज्य हैं
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
नंबर_प्राइम_रचित_है
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
नंबर__एलसीएम
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__lcm')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
नंबर__एलसीएम_रचित
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
संख्याएँ__सूची_प्रधान_कारक
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
संख्या__सूची_प्रधान_कारक_संयुक्त
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
संख्याएँ__स्थान_मूल्य
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__place_value')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
संख्याएँ__स्थान_मान_संकलित
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
नंबर__राउंड_नंबर
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__round_number')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
नंबर__राउंड_नंबर_रचित
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बहुपद_जोड़ें
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/polynomials__add')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बहुपद_गुणांक_नामांकित
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बहुपद_संग्रह
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/polynomials__collect')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बहुपद_रचना
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/polynomials__compose')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बहुपद_मूल्यांकन करें
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बहुपद_मूल्यांकन_रचित
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बहुपद_विस्तार
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/polynomials__expand')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
बहुपद_सरलीकरण_शक्ति
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
प्रायिकता__swr_p_level_set
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
प्रायिकता__swr_p_अनुक्रम
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
- विवरण :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 1.0.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'test' | 10000 |
'train' | 1999998 |
- विशेषताएँ :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}