math_dataset

Ссылки:

алгебра__linear_1d

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

алгебра__linear_1d_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

алгебра__linear_2d

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

алгебра__linear_2d_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

алгебра__polynomial_roots

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

алгебра__polynomial_roots_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

алгебра__sequence_next_term

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

алгебра__sequence_nth_term

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

арифметика__add_or_sub

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

арифметика__add_or_sub_in_base

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmetic__add_sub_multiple

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

арифметика__div

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__div')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

арифметика__смешанная

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

арифметика__mul

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

арифметика__mul_div_multiple

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmetic__nearest_integer_root

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmetic__simplify_surd

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

исчисление__дифференцировать

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

исчисление__дифференциат_состав

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

сравнение__ближайший

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__closest')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

сравнение__ближайший_составленный

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

сравнение__kth_biggest

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

сравнение__kth_biggest_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

сравнение__пара

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__pair')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

сравнение__pair_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

сравнение__сортировка

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__sort')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

сравнение__sort_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

измерение__конверсия

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/measurement__conversion')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

измерение__время

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/measurement__time')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

числа__base_conversion

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

цифры__div_remainder

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

Numbers__div_remainder_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

цифры__gcd

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__gcd')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

Numbers__gcd_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

цифры__is_factor

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

Numbers__is_factor_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

цифры__is_prime

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

Numbers__is_prime_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

цифры__lcm

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__lcm')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

цифры__lcm_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

Numbers__list_prime_factors

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

Numbers__list_prime_factors_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

цифры__place_value

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__place_value')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

цифры__place_value_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

цифры__round_number

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__round_number')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

цифры__round_number_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

полиномы__add

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__add')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

полиномы__coefficient_named

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

полиномы__collect

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__collect')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

полиномы__compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__compose')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

полиномы__оценить

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

полиномы__evaluate_compose

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

полиномы__развернуть

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__expand')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

полиномы__simplify_power

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

вероятность__swr_p_level_set

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

вероятность__swr_p_sequence

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
  • Описание :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Лицензия : Нет известной лицензии.
  • Версия : 1.0.0
  • Расколы :
Расколоть Примеры
'test' 10000
'train' 1999998
  • Функции :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}