zbiór_danych_matematycznych

Referencje:

algebra__liniowa_1d

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__linear_1d_composed

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__liniowa_2d

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__linear_2d_composed

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__polynomial_roots

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__polynomial_roots_composed

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__sekwencja_następny_termin

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__sekwencja_nth_term

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arytmetyka__add_or_sub

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arytmetyka__add_or_sub_in_base

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arytmetyka__add_sub_multiple

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arytmetyka__div

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__div')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arytmetyka__mieszane

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arytmetyka__mul

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arytmetyka__mul_div_multiple

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arytmetyka__nearest_integer_root

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arytmetyka__simplify_surd

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

rachunek różniczkowy

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

rachunek różniczkowy_złożony

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

porównanie__najbliższe

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__closest')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

porównanie__najbliższe_skomponowane

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

porównanie__kth_największy

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

porównanie__kth_biggest_composed

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

porównanie__para

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__pair')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

porównanie__para_skomponowana

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

porównanie__sortowanie

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__sort')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

porównanie__sort_skomponowany

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pomiar__konwersja

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/measurement__conversion')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pomiar__czas

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/measurement__time')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__konwersja_podstawowa

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__div_remainder

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

numery__div_remainder_skomponowany

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__gcd

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__gcd')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

numery__gcd_skomponowane

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__jest_czynnikiem

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__is_factor_composed

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__jest_pierwsze

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

numery__is_prime_składane

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__lcm

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__lcm')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__lcm_skomponowane

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__list_pierwszych_czynników

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

numery__list_prime_factors_composed

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__wartość_miejsca

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__place_value')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__miejsce_wartość_skomponowane

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__okrągła_liczba

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__round_number')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

liczby__okrągły_numer_skomponowany

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

wielomiany__dodaj

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__add')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

wielomiany__nazwa_współczynnika

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

wielomiany__zbieraj

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__collect')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

wielomiany__układaj

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__compose')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

wielomiany__oceniaj

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

wielomiany__ocena_składane

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

wielomiany__rozwiń

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__expand')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

wielomiany__uprość_moc

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

prawdopodobieństwo__swr_p_level_set

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

prawdopodobieństwo__swr_p_sekwencja

Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:

ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
  • Opis :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licencja : Brak znanej licencji
  • Wersja : 1.0.0
  • Podziały :
Podział Przykłady
'test' 10000
'train' 1999998
  • Cechy :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}