مراجع:
الجبر__الخطي_1د
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الجبر__الخطي_1d_المركب
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الجبر__الخطي_2د
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الجبر__الخطي_2d_المركب
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الجبر__جذور_متعددة_الحدود
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الجبر__متعددة_الحدود_جذور_مركبة
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الجبر__التسلسل_التالي_المصطلح
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الجبر__التسلسل_nth_term
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الحسابية__add_or_sub
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الحسابية__add_or_sub_in_base
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الحسابي__add_sub_multiple
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الحساب__div
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__div')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الحساب__مختلط
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
الحساب__mul
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmetic__mul_div_multiple
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmetic__nearest_integer_root
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmetic__simplify_surd
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
حساب التفاضل والتكامل__التمايز
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
حساب التفاضل والتكامل__ التفاضل_المركب
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
مقارنة__الأقرب
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__closest')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
مقارنة__أقرب_مركب
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
مقارنة__كث_أكبر
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
مقارنة__كث_أكبر_مركب
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
مقارنة__زوج
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__pair')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
match__pair_compose
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
مقارنة__فرز
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__sort')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
بالمقارنة__الفرز_المركب
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
قياس__تحويل
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/measurement__conversion')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
قياس__الوقت
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/measurement__time')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__base_conversion
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__div_remainder
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__div_remainder_compose
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__gcd
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__gcd')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__gcd_compose
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__is_factor
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__is_factor_compose
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__is_prime
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__is_prime_compose
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__lcm
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__lcm')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__lcm_compose
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__list_prime_factors
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
Numbers__list_prime_factors_compose
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__place_value
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__place_value')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
Numbers__place_value_compose
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__round_number
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__round_number')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
number__round_number_compose
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
كثيرات الحدود__add
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__add')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
كثيرات الحدود__معامل_المسمى
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
كثيرات الحدود__collect
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__collect')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
كثيرات الحدود__compose
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__compose')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
كثيرات الحدود__تقييم
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
كثيرات الحدود__تقييم_المركبة
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
كثيرات الحدود__توسيع
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__expand')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
كثيرات الحدود__تبسيط_القوة
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
احتمال__swr_p_level_set
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
احتمال__swr_p_sequence
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
- وصف :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- الترخيص : لا يوجد ترخيص معروف
- الإصدار : 1.0.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'test' | 10000 |
'train' | 1999998 |
- سمات :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}