math_dataset

مراجع:

جبر__خطی_1d

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

جبر__خطی_1d_composed

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

جبر__خطی_2d

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

جبر__خطی_2d_composed

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

جبر__ریشه_چند جمله ای

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

جبر__ریشه_چند جمله ای_ترکیب شده

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

جبر__دنباله_ترم_بعدی

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

جبر__دنباله_نهمین_ترم

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

حسابی__افزودن_یا_فرعی

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmetic__add_or_sub_in_base

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmetic__add_sub_multiple

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmetic__div

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/arithmetic__div')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

حسابی__مخلوط

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

حسابی__مول

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

حسابی__mul_div_multiple

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

حسابی__نزدیکترین_ریشه_صحیح

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

حسابی__ساده_کردن

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

calculus__متمایز کردن

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

calculus__differentiate_composed

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

مقایسه__نزدیکترین

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/comparison__closest')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

مقایسه__نزدیک_ترکیب شده

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

مقایسه__kth_بزرگترین

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

مقایسه__کث_بزرگترین_ساخته شده

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

مقایسه__جفت

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/comparison__pair')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

مقایسه__جفت_تشکیل شده

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

مقایسه__مرتب سازی

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/comparison__sort')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

مقایسه__مرتب_سازی شده

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اندازه گیری__تبدیل

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/measurement__conversion')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اندازه گیری__زمان

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/measurement__time')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__تبدیل_پایه

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__div_remainder

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__div_remainder_composed

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__gcd

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__gcd')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__gcd_composed

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__فاکتور است

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__فاکتور_ترکیب شده است

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__اول است

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__اصلی_ترکیب شده است

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__lcm

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__lcm')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیمات :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__lcm_composed

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

numbers__list_prime_factors

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

numbers__list_prime_factors_composed

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__مقدار_مکان

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__place_value')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__مکان_ارزش_تشکیل شده

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__شماره_گرد

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__round_number')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

اعداد__گرد_شماره_تشکیل شده

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

چند جمله ای__افزودن

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/polynomials__add')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

چند جمله ای__ضریب_نامگذاری شده

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

چند جمله ای__جمع آوری

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/polynomials__collect')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

چند جمله ای__ترکیب

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/polynomials__compose')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

چند جمله ای__ارزیابی

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

چند جمله ای__ارزش_ساز_شده

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیمات :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

چند جمله ای__گسترش

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/polynomials__expand')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

چند جمله ای__ساده_توان

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

احتمال__swr_p_level_set

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیمات :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

probability__swr_p_sequence

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
  • توضیحات :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 1.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'test' 10000
'train' 1999998
  • ویژگی ها :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}