klue

Riferimenti:

ynat

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:klue/ynat')
  • Descrizione :
KLUE (Korean Language Understanding Evaluation)
Korean Language Understanding Evaluation (KLUE) benchmark is a series of datasets to evaluate natural language
understanding capability of Korean language models. KLUE consists of 8 diverse and representative tasks, which are accessible
to anyone without any restrictions. With ethical considerations in mind, we deliberately design annotation guidelines to obtain
unambiguous annotations for all datasets. Futhermore, we build an evaluation system and carefully choose evaluations metrics
for every task, thus establishing fair comparison across Korean language models.
  • Licenza : CC-BY-SA-4.0
  • Versione : 1.0.0
  • Divide :
Diviso Esempi
'train' 45678
'validation' 9107
  • Caratteristiche :
{
    "guid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 7,
        "names": [
            "IT\uacfc\ud559",
            "\uacbd\uc81c",
            "\uc0ac\ud68c",
            "\uc0dd\ud65c\ubb38\ud654",
            "\uc138\uacc4",
            "\uc2a4\ud3ec\uce20",
            "\uc815\uce58"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "url": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "date": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

m

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:klue/sts')
  • Descrizione :
KLUE (Korean Language Understanding Evaluation)
Korean Language Understanding Evaluation (KLUE) benchmark is a series of datasets to evaluate natural language
understanding capability of Korean language models. KLUE consists of 8 diverse and representative tasks, which are accessible
to anyone without any restrictions. With ethical considerations in mind, we deliberately design annotation guidelines to obtain
unambiguous annotations for all datasets. Futhermore, we build an evaluation system and carefully choose evaluations metrics
for every task, thus establishing fair comparison across Korean language models.
  • Licenza : CC-BY-SA-4.0
  • Versione : 1.0.0
  • Divide :
Diviso Esempi
'train' 11668
'validation' 519
  • Caratteristiche :
{
    "guid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "labels": {
        "label": {
            "dtype": "float64",
            "id": null,
            "_type": "Value"
        },
        "real-label": {
            "dtype": "float64",
            "id": null,
            "_type": "Value"
        },
        "binary-label": {
            "num_classes": 2,
            "names": [
                "negative",
                "positive"
            ],
            "names_file": null,
            "id": null,
            "_type": "ClassLabel"
        }
    }
}

nli

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:klue/nli')
  • Descrizione :
KLUE (Korean Language Understanding Evaluation)
Korean Language Understanding Evaluation (KLUE) benchmark is a series of datasets to evaluate natural language
understanding capability of Korean language models. KLUE consists of 8 diverse and representative tasks, which are accessible
to anyone without any restrictions. With ethical considerations in mind, we deliberately design annotation guidelines to obtain
unambiguous annotations for all datasets. Futhermore, we build an evaluation system and carefully choose evaluations metrics
for every task, thus establishing fair comparison across Korean language models.
  • Licenza : CC-BY-SA-4.0
  • Versione : 1.0.0
  • Divide :
Diviso Esempi
'train' 24998
'validation' 3000
  • Caratteristiche :
{
    "guid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}

ner

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:klue/ner')
  • Descrizione :
KLUE (Korean Language Understanding Evaluation)
Korean Language Understanding Evaluation (KLUE) benchmark is a series of datasets to evaluate natural language
understanding capability of Korean language models. KLUE consists of 8 diverse and representative tasks, which are accessible
to anyone without any restrictions. With ethical considerations in mind, we deliberately design annotation guidelines to obtain
unambiguous annotations for all datasets. Futhermore, we build an evaluation system and carefully choose evaluations metrics
for every task, thus establishing fair comparison across Korean language models.
  • Licenza : CC-BY-SA-4.0
  • Versione : 1.0.0
  • Divide :
Diviso Esempi
'train' 21008
'validation' 5000
  • Caratteristiche :
{
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "tokens": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner_tags": {
        "feature": {
            "num_classes": 13,
            "names": [
                "B-DT",
                "I-DT",
                "B-LC",
                "I-LC",
                "B-OG",
                "I-OG",
                "B-PS",
                "I-PS",
                "B-QT",
                "I-QT",
                "B-TI",
                "I-TI",
                "O"
            ],
            "names_file": null,
            "id": null,
            "_type": "ClassLabel"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

Rif

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:klue/re')
  • Descrizione :
KLUE (Korean Language Understanding Evaluation)
Korean Language Understanding Evaluation (KLUE) benchmark is a series of datasets to evaluate natural language
understanding capability of Korean language models. KLUE consists of 8 diverse and representative tasks, which are accessible
to anyone without any restrictions. With ethical considerations in mind, we deliberately design annotation guidelines to obtain
unambiguous annotations for all datasets. Futhermore, we build an evaluation system and carefully choose evaluations metrics
for every task, thus establishing fair comparison across Korean language models.
  • Licenza : CC-BY-SA-4.0
  • Versione : 1.0.0
  • Divide :
Diviso Esempi
'train' 32470
'validation' 7765
  • Caratteristiche :
{
    "guid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "subject_entity": {
        "word": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "start_idx": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "end_idx": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "type": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    },
    "object_entity": {
        "word": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "start_idx": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "end_idx": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "type": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    },
    "label": {
        "num_classes": 30,
        "names": [
            "no_relation",
            "org:dissolved",
            "org:founded",
            "org:place_of_headquarters",
            "org:alternate_names",
            "org:member_of",
            "org:members",
            "org:political/religious_affiliation",
            "org:product",
            "org:founded_by",
            "org:top_members/employees",
            "org:number_of_employees/members",
            "per:date_of_birth",
            "per:date_of_death",
            "per:place_of_birth",
            "per:place_of_death",
            "per:place_of_residence",
            "per:origin",
            "per:employee_of",
            "per:schools_attended",
            "per:alternate_names",
            "per:parents",
            "per:children",
            "per:siblings",
            "per:spouse",
            "per:other_family",
            "per:colleagues",
            "per:product",
            "per:religion",
            "per:title"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

d.p

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:klue/dp')
  • Descrizione :
KLUE (Korean Language Understanding Evaluation)
Korean Language Understanding Evaluation (KLUE) benchmark is a series of datasets to evaluate natural language
understanding capability of Korean language models. KLUE consists of 8 diverse and representative tasks, which are accessible
to anyone without any restrictions. With ethical considerations in mind, we deliberately design annotation guidelines to obtain
unambiguous annotations for all datasets. Futhermore, we build an evaluation system and carefully choose evaluations metrics
for every task, thus establishing fair comparison across Korean language models.
  • Licenza : CC-BY-SA-4.0
  • Versione : 1.0.0
  • Divide :
Diviso Esempi
'train' 10000
'validation' 2000
  • Caratteristiche :
{
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "index": [
        {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        }
    ],
    "word_form": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "lemma": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "pos": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "head": [
        {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        }
    ],
    "deprel": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

signor

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:klue/mrc')
  • Descrizione :
KLUE (Korean Language Understanding Evaluation)
Korean Language Understanding Evaluation (KLUE) benchmark is a series of datasets to evaluate natural language
understanding capability of Korean language models. KLUE consists of 8 diverse and representative tasks, which are accessible
to anyone without any restrictions. With ethical considerations in mind, we deliberately design annotation guidelines to obtain
unambiguous annotations for all datasets. Futhermore, we build an evaluation system and carefully choose evaluations metrics
for every task, thus establishing fair comparison across Korean language models.
  • Licenza : CC-BY-SA-4.0
  • Versione : 1.0.0
  • Divide :
Diviso Esempi
'train' 17554
'validation' 5841
  • Caratteristiche :
{
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "news_category": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "guid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "is_impossible": {
        "dtype": "bool",
        "id": null,
        "_type": "Value"
    },
    "question_type": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

va bene

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:klue/wos')
  • Descrizione :
KLUE (Korean Language Understanding Evaluation)
Korean Language Understanding Evaluation (KLUE) benchmark is a series of datasets to evaluate natural language
understanding capability of Korean language models. KLUE consists of 8 diverse and representative tasks, which are accessible
to anyone without any restrictions. With ethical considerations in mind, we deliberately design annotation guidelines to obtain
unambiguous annotations for all datasets. Futhermore, we build an evaluation system and carefully choose evaluations metrics
for every task, thus establishing fair comparison across Korean language models.
  • Licenza : CC-BY-SA-4.0
  • Versione : 1.0.0
  • Divide :
Diviso Esempi
'train' 8000
'validation' 1000
  • Caratteristiche :
{
    "guid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "domains": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "dialogue": [
        {
            "role": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "state": [
                {
                    "dtype": "string",
                    "id": null,
                    "_type": "Value"
                }
            ]
        }
    ]
}