Références :
presupposition_all_n_presupposition
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/presupposition_all_n_presupposition')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'all_n_presupposition' | 1900 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
présupposition_both_presupposition
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/presupposition_both_presupposition')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'both_presupposition' | 1900 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
presupposition_change_of_state
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/presupposition_change_of_state')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'change_of_state' | 1900 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
presupposition_cleft_existence
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/presupposition_cleft_existence')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'cleft_existence' | 1900 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
presupposition_cleft_uniqueness
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/presupposition_cleft_uniqueness')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'cleft_uniqueness' | 1900 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
presupposition_only_presupposition
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/presupposition_only_presupposition')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'only_presupposition' | 1900 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
presupposition_possessed_definites_existence
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/presupposition_possessed_definites_existence')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'possessed_definites_existence' | 1900 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
presupposition_possessed_definites_uniqueness
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/presupposition_possessed_definites_uniqueness')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'possessed_definites_uniqueness' | 1900 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
présupposition_question_presupposition
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/presupposition_question_presupposition')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'question_presupposition' | 1900 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
implicature_connectives
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/implicature_connectives')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'connectives' | 1200 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
implicature_gradable_adjective
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/implicature_gradable_adjective')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'gradable_adjective' | 1200 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
implicature_gradable_verb
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/implicature_gradable_verb')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'gradable_verb' | 1200 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
implicature_modals
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/implicature_modals')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'modals' | 1200 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
implicature_numerals_10_100
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/implicature_numerals_10_100')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'numerals_10_100' | 1200 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
implicature_numerals_2_3
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/implicature_numerals_2_3')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'numerals_2_3' | 1200 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
implicature_quantificateurs
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:imppres/implicature_quantifiers')
- Description :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licence : Creative Commons Attribution-NonCommercial 4.0 Licence publique internationale
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'quantifiers' | 1200 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}