impressionar

Referências:

pressuposição_todos_n_pressuposição

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/presupposition_all_n_presupposition')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'all_n_presupposition' 1900
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

pressuposição_ambos_pressuposição

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/presupposition_both_presupposition')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'both_presupposition' 1900
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

pressuposição_mudança_de_estado

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/presupposition_change_of_state')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'change_of_state' 1900
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

pressuposição_fenda_existência

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/presupposition_cleft_existence')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'cleft_existence' 1900
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

pressuposição_cleft_uniqueness

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/presupposition_cleft_uniqueness')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'cleft_uniqueness' 1900
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

pressuposição_somente_pressuposição

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/presupposition_only_presupposition')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'only_presupposition' 1900
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

pressuposição_possessada_definida_existência

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/presupposition_possessed_definites_existence')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'possessed_definites_existence' 1900
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

pressuposição_possessed_definites_uniqueness

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/presupposition_possessed_definites_uniqueness')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'possessed_definites_uniqueness' 1900
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

pressuposição_pergunta_pressuposição

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/presupposition_question_presupposition')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'question_presupposition' 1900
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

implicatura_conectivos

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/implicature_connectives')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'connectives' 1200
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicature_gradable_adjective

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/implicature_gradable_adjective')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'gradable_adjective' 1200
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicature_gradable_verb

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/implicature_gradable_verb')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'gradable_verb' 1200
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicatura_modals

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/implicature_modals')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'modals' 1200
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicatura_numerais_10_100

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/implicature_numerals_10_100')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'numerals_10_100' 1200
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicatura_numerais_2_3

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/implicature_numerals_2_3')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'numerals_2_3' 1200
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicaturas_quantificadores

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:imppres/implicature_quantifiers')
  • Descrição :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licença : Creative Commons Attribution-NonCommercial 4.0 Licença Pública Internacional
  • Versão : 1.1.0
  • Divisões :
Dividir Exemplos
'quantifiers' 1200
  • Características :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}