Referencje:
presupposition_all_n_presupposition
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/presupposition_all_n_presupposition')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'all_n_presupposition' | 1900 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
presupposition_both_presupposition
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/presupposition_both_presupposition')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'both_presupposition' | 1900 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
założenie_zmiana_stanu
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/presupposition_change_of_state')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'change_of_state' | 1900 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
założenie_rozszczep_istnienia
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/presupposition_cleft_existence')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'cleft_existence' | 1900 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
założenie_rozszczep_wyjątkowość
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/presupposition_cleft_uniqueness')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'cleft_uniqueness' | 1900 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
presupposition_only_presupposition
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/presupposition_only_presupposition')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'only_presupposition' | 1900 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
założenie_posiadania_określa_istnienie
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/presupposition_possessed_definites_existence')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'possessed_definites_existence' | 1900 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
założenie_posiadania_określa_wyjątkowość
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/presupposition_possessed_definites_uniqueness')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'possessed_definites_uniqueness' | 1900 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
presupposition_question_presupposition
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/presupposition_question_presupposition')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'question_presupposition' | 1900 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"presupposition": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"pairID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"paradigmID": {
"dtype": "int16",
"id": null,
"_type": "Value"
}
}
implicature_connectives
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/implicature_connectives')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'connectives' | 1200 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
implicature_gradable_adjective
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/implicature_gradable_adjective')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'gradable_adjective' | 1200 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
czasownik_implicature_gradable_verb
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/implicature_gradable_verb')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'gradable_verb' | 1200 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
implicature_modals
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/implicature_modals')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'modals' | 1200 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
implikatury_liczby_10_100
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/implicature_numerals_10_100')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'numerals_10_100' | 1200 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
implikatury_liczby_2_3
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/implicature_numerals_2_3')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'numerals_2_3' | 1200 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
kwantyfikatory_implikacji
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:imppres/implicature_quantifiers')
- Opis :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
- Licencja : Creative Commons Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowa licencja publiczna
- Wersja : 1.1.0
- Podziały :
Podział | Przykłady |
---|---|
'quantifiers' | 1200 |
- Cechy :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label_log": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"gold_label_prag": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"spec_relation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"item_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"trigger": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lexemes": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}