Referensi:
hausa_voa_ner
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:hausa_voa_ner/hausa_voa_ner')
- Keterangan :
The Hausa VOA NER dataset is a labeled dataset for named entity recognition in Hausa. The texts were obtained from
Hausa Voice of America News articles https://www.voahausa.com/ . We concentrate on
four types of named entities: persons [PER], locations [LOC], organizations [ORG], and dates & time [DATE].
The Hausa VOA NER data files contain 2 columns separated by a tab (' '). Each word has been put on a separate line and
there is an empty line after each sentences i.e the CoNLL format. The first item on each line is a word, the second
is the named entity tag. The named entity tags have the format I-TYPE which means that the word is inside a phrase
of type TYPE. For every multi-word expression like 'New York', the first word gets a tag B-TYPE and the subsequent words
have tags I-TYPE, a word with tag O is not part of a phrase. The dataset is in the BIO tagging scheme.
For more details, see https://www.aclweb.org/anthology/2020.emnlp-main.204/
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 292 |
'train' | 1015 |
'validation' | 146 |
- Fitur :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 9,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
"B-DATE",
"I-DATE"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}