Références :
mlsum_de
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/mlsum_de')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_covid' | 5058 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 10695 |
'train' | 220748 |
'validation' | 11392 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"topic": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"date": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
mlsum_es
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/mlsum_es')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_covid' | 1938 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 13366 |
'train' | 259888 |
'validation' | 9977 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"topic": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"date": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_es_en_v0
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_es_en_v0')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 19797 |
'train' | 79515 |
'validation' | 8835 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_ru_en_v0
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_ru_en_v0')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 9094 |
'train' | 36898 |
'validation' | 4100 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_tr_en_v0
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_tr_en_v0')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 808 |
'train' | 3193 |
'validation' | 355 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_vi_en_v0
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_vi_en_v0')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 2167 |
'train' | 9206 |
'validation' | 1023 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_arabic_ar
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_arabic_ar')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 5841 |
'train' | 20441 |
'validation' | 2919 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"ar",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"ar",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_chinese_zh
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_chinese_zh')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 3775 |
'train' | 13211 |
'validation' | 1886 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"zh",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"zh",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_czech_cs
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_czech_cs')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 1438 |
'train' | 5033 |
'validation' | 718 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"cs",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"cs",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_dutch_nl
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_dutch_nl')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 6248 |
'train' | 21866 |
'validation' | 3123 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"nl",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"nl",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_english_fr
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_english_en')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 28614 |
'train' | 99020 |
'validation' | 13823 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"en",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"en",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_french_fr
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_french_fr')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 12731 |
'train' | 44556 |
'validation' | 6364 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"fr",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"fr",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_german_de
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_german_de')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 11669 |
'train' | 40839 |
'validation' | 5833 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"de",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"de",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_hindi_hi
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_hindi_hi')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 1984 |
'train' | 6942 |
'validation' | 991 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"hi",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"hi",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_indonesian_id
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_indonesian_id')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 9497 |
'train' | 33237 |
'validation' | 4747 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"id",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"id",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_italian_it
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_italian_it')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10189 |
'train' | 35661 |
'validation' | 5093 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"it",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"it",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_japanese_ja
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_japanese_ja')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 2530 |
'train' | 8853 |
'validation' | 1264 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"ja",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"ja",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_korean_ko
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_korean_ko')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 2436 |
'train' | 8524 |
'validation' | 1216 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"ko",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"ko",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_portuguese_pt
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_portuguese_pt')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 16331 |
'train' | 57159 |
'validation' | 8165 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"pt",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"pt",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_russian_ru
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_russian_ru')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10580 |
'train' | 37028 |
'validation' | 5288 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"ru",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"ru",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_spanish_es
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_spanish_es')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 22632 |
'train' | 79212 |
'validation' | 11316 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"es",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"es",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_thai_th
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_thai_th')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 2950 |
'train' | 10325 |
'validation' | 1475 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"th",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"th",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_turkish_tr
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_turkish_tr')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 900 |
'train' | 3148 |
'validation' | 449 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"tr",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"tr",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
wiki_lingua_vietnamese_vi
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_lingua_vietnamese_vi')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 3917 |
'train' | 13707 |
'validation' | 1957 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_aligned": {
"languages": [
"vi",
"en"
],
"id": null,
"_type": "Translation"
},
"target_aligned": {
"languages": [
"vi",
"en"
],
"id": null,
"_type": "Translation"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
xsum
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/xsum')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_backtranslation' | 500 |
'challenge_test_bfp_02' | 500 |
'challenge_test_bfp_05' | 500 |
'challenge_test_covid' | 401 |
'challenge_test_nopunc' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 1166 |
'train' | 23206 |
'validation' | 1117 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"xsum_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"document": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
common_gen
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/common_gen')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 1497 |
'train' | 67389 |
'validation' | 993 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"concept_set_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"concepts": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
],
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
cs_restaurants
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/cs_restaurants')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 842 |
'train' | 3569 |
'validation' | 781 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dialog_act": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dialog_act_delexicalized": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_delexicalized": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
dard
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/dart')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 5097 |
'train' | 62659 |
'validation' | 2768 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dart_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"tripleset": [
[
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
],
"subtree_was_extended": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"target_sources": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
],
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
e2e_nlg
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/e2e_nlg')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 4693 |
'train' | 33525 |
'validation' | 4299 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"meaning_representation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
toto
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/totto')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 7700 |
'train' | 121153 |
'validation' | 7700 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"totto_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"table_page_title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"table_webpage_url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"table_section_title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"table_section_text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"table": [
[
{
"column_span": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"is_header": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"row_span": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"value": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
]
],
"highlighted_cells": [
[
{
"dtype": "int32",
"id": null,
"_type": "Value"
}
]
],
"example_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_annotations": [
{
"original_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_after_deletion": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_after_ambiguity": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"final_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
],
"overlap_subset": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
web_nlg_fr
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/web_nlg_en')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_numbers' | 500 |
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 502 |
'challenge_validation_sample' | 499 |
'test' | 1779 |
'train' | 35426 |
'validation' | 1667 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"input": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
],
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
],
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"webnlg_id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
web_nlg_ru
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/web_nlg_ru')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 501 |
'challenge_validation_sample' | 500 |
'test' | 1102 |
'train' | 14630 |
'validation' | 790 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"input": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
],
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
],
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"webnlg_id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
wiki_auto_asset_turk
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/wiki_auto_asset_turk')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_asset_backtranslation' | 359 |
'challenge_test_asset_bfp02' | 359 |
'challenge_test_asset_bfp05' | 359 |
'challenge_test_asset_nopunc' | 359 |
'challenge_test_turk_backtranslation' | 359 |
'challenge_test_turk_bfp02' | 359 |
'challenge_test_turk_bfp05' | 359 |
'challenge_test_turk_nopunc' | 359 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test_asset' | 359 |
'test_turk' | 359 |
'train' | 483801 |
'validation' | 20000 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
schéma_guide_dialog
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:gem/schema_guided_dialog')
- Description :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.
It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
- Licence : CC-BY-SA-4.0
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'challenge_test_backtranslation' | 500 |
'challenge_test_bfp02' | 500 |
'challenge_test_bfp05' | 500 |
'challenge_test_nopunc' | 500 |
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 10000 |
'train' | 164982 |
'validation' | 10000 |
- Caractéristiques :
{
"gem_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gem_parent_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dialog_acts": [
{
"act": {
"num_classes": 18,
"names": [
"AFFIRM",
"AFFIRM_INTENT",
"CONFIRM",
"GOODBYE",
"INFORM",
"INFORM_COUNT",
"INFORM_INTENT",
"NEGATE",
"NEGATE_INTENT",
"NOTIFY_FAILURE",
"NOTIFY_SUCCESS",
"OFFER",
"OFFER_INTENT",
"REQUEST",
"REQUEST_ALTS",
"REQ_MORE",
"SELECT",
"THANK_YOU"
],
"id": null,
"_type": "ClassLabel"
},
"slot": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"values": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}
],
"context": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
],
"dialog_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"service": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"turn_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"prompt": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"references": [
{
"dtype": "string",
"id": null,
"_type": "Value"
}
]
}