joya

Referencias:

mlsum_de

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/mlsum_de')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_covid' 5058
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 10695
'train' 220748
'validation' 11392
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "topic": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "url": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "date": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

mlsum_es

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/mlsum_es')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_covid' 1938
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 13366
'train' 259888
'validation' 9977
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "topic": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "url": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "date": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_es_en_v0

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_es_en_v0')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 19797
'train' 79515
'validation' 8835
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_ru_en_v0

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_ru_en_v0')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 9094
'train' 36898
'validation' 4100
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_tr_en_v0

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_tr_en_v0')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 808
'train' 3193
'validation' 355
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_vi_en_v0

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_vi_en_v0')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 2167
'train' 9206
'validation' 1023
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_arabic_ar

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_arabic_ar')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 5841
'train' 20441
'validation' 2919
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "ar",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "ar",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_chino_zh

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_chinese_zh')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 3775
'train' 13211
'validation' 1886
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "zh",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "zh",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_checo_cs

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_czech_cs')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 1438
'train' 5033
'validation' 718
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "cs",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "cs",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_holandés_nl

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_dutch_nl')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 6248
'train' 21866
'validation' 3123
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "nl",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "nl",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_inglés_en

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_english_en')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 28614
'train' 99020
'validation' 13823
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "en",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "en",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_french_fr

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_french_fr')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 12731
'train' 44556
'validation' 6364
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "fr",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "fr",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_alemán_de

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_german_de')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 11669
'train' 40839
'validation' 5833
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "de",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "de",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_hindi_hi

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_hindi_hi')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 1984
'train' 6942
'validation' 991
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "hi",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "hi",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_indonesio_id

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_indonesian_id')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 9497
'train' 33237
'validation' 4747
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "id",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "id",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_italiano_es

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_italian_it')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 10189
'train' 35661
'validation' 5093
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "it",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "it",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_japanese_ja

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_japanese_ja')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 2530
'train' 8853
'validation' 1264
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "ja",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "ja",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_coreano_ko

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_korean_ko')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 2436
'train' 8524
'validation' 1216
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "ko",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "ko",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_portuguese_pt

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_portuguese_pt')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 16331
'train' 57159
'validation' 8165
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "pt",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "pt",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_ruso_ru

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_russian_ru')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 10580
'train' 37028
'validation' 5288
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "ru",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "ru",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_español

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_spanish_es')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 22632
'train' 79212
'validation' 11316
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "es",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "es",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_tailandés_th

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_thai_th')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 2950
'train' 10325
'validation' 1475
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "th",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "th",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_turco_tr

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_turkish_tr')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 900
'train' 3148
'validation' 449
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "tr",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "tr",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

wiki_lingua_vietnamita_vi

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_lingua_vietnamese_vi')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 3917
'train' 13707
'validation' 1957
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source_aligned": {
        "languages": [
            "vi",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "target_aligned": {
        "languages": [
            "vi",
            "en"
        ],
        "id": null,
        "_type": "Translation"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

suma x

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/xsum')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_backtranslation' 500
'challenge_test_bfp_02' 500
'challenge_test_bfp_05' 500
'challenge_test_covid' 401
'challenge_test_nopunc' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 1166
'train' 23206
'validation' 1117
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "xsum_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "document": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

gen_común

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/common_gen')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_scramble' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 1497
'train' 67389
'validation' 993
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "concept_set_id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "concepts": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

cs_restaurantes

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/cs_restaurants')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_scramble' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 842
'train' 3569
'validation' 781
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "dialog_act": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "dialog_act_delexicalized": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target_delexicalized": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

dardo

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/dart')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'test' 5097
'train' 62659
'validation' 2768
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "dart_id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "tripleset": [
        [
            {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            }
        ]
    ],
    "subtree_was_extended": {
        "dtype": "bool",
        "id": null,
        "_type": "Value"
    },
    "target_sources": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

e2e_nlg

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/e2e_nlg')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_scramble' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 4693
'train' 33525
'validation' 4299
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "meaning_representation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

toto

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/totto')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_scramble' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 7700
'train' 121153
'validation' 7700
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "totto_id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "table_page_title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "table_webpage_url": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "table_section_title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "table_section_text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "table": [
        [
            {
                "column_span": {
                    "dtype": "int32",
                    "id": null,
                    "_type": "Value"
                },
                "is_header": {
                    "dtype": "bool",
                    "id": null,
                    "_type": "Value"
                },
                "row_span": {
                    "dtype": "int32",
                    "id": null,
                    "_type": "Value"
                },
                "value": {
                    "dtype": "string",
                    "id": null,
                    "_type": "Value"
                }
            }
        ]
    ],
    "highlighted_cells": [
        [
            {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        ]
    ],
    "example_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence_annotations": [
        {
            "original_sentence": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "sentence_after_deletion": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "sentence_after_ambiguity": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "final_sentence": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            }
        }
    ],
    "overlap_subset": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

web_nlg_es

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/web_nlg_en')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_numbers' 500
'challenge_test_scramble' 500
'challenge_train_sample' 502
'challenge_validation_sample' 499
'test' 1779
'train' 35426
'validation' 1667
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "input": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "category": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "webnlg_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

web_nlg_ru

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/web_nlg_ru')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_scramble' 500
'challenge_train_sample' 501
'challenge_validation_sample' 500
'test' 1102
'train' 14630
'validation' 790
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "input": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "category": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "webnlg_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

wiki_auto_asset_turk

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/wiki_auto_asset_turk')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_asset_backtranslation' 359
'challenge_test_asset_bfp02' 359
'challenge_test_asset_bfp05' 359
'challenge_test_asset_nopunc' 359
'challenge_test_turk_backtranslation' 359
'challenge_test_turk_bfp02' 359
'challenge_test_turk_bfp05' 359
'challenge_test_turk_nopunc' 359
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test_asset' 359
'test_turk' 359
'train' 483801
'validation' 20000
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}

esquema_diálogo_guiado

Utilice el siguiente comando para cargar este conjunto de datos en TFDS:

ds = tfds.load('huggingface:gem/schema_guided_dialog')
  • Descripción :
GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,
both through human annotations and automated Metrics.

GEM aims to:
- measure NLG progress across 13 datasets spanning many NLG tasks and languages.
- provide an in-depth analysis of data and models presented via data statements and challenge sets.
- develop standards for evaluation of generated text using both automated and human metrics.

It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development
by extending existing data or developing datasets for additional languages.
  • Licencia : CC-BY-SA-4.0
  • Versión : 1.1.0
  • Divisiones :
Dividir Ejemplos
'challenge_test_backtranslation' 500
'challenge_test_bfp02' 500
'challenge_test_bfp05' 500
'challenge_test_nopunc' 500
'challenge_test_scramble' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 10000
'train' 164982
'validation' 10000
  • Características :
{
    "gem_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gem_parent_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "dialog_acts": [
        {
            "act": {
                "num_classes": 18,
                "names": [
                    "AFFIRM",
                    "AFFIRM_INTENT",
                    "CONFIRM",
                    "GOODBYE",
                    "INFORM",
                    "INFORM_COUNT",
                    "INFORM_INTENT",
                    "NEGATE",
                    "NEGATE_INTENT",
                    "NOTIFY_FAILURE",
                    "NOTIFY_SUCCESS",
                    "OFFER",
                    "OFFER_INTENT",
                    "REQUEST",
                    "REQUEST_ALTS",
                    "REQ_MORE",
                    "SELECT",
                    "THANK_YOU"
                ],
                "id": null,
                "_type": "ClassLabel"
            },
            "slot": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "values": [
                {
                    "dtype": "string",
                    "id": null,
                    "_type": "Value"
                }
            ]
        }
    ],
    "context": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ],
    "dialog_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "service": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "turn_id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "prompt": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "target": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "references": [
        {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    ]
}