Referencias:
v1.0
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:fever/v1.0')
- Descripción :
With billions of individual pages on the web providing information on almost every conceivable topic, we should have the ability to collect facts that answer almost every conceivable question. However, only a small fraction of this information is contained in structured sources (Wikidata, Freebase, etc.) – we are therefore limited by our ability to transform free-form text to structured knowledge. There is, however, another problem that has become the focus of a lot of recent research and media coverage: false information coming from unreliable sources. [1] [2]
The FEVER workshops are a venue for work in verifiable knowledge extraction and to stimulate progress in this direction.
FEVER V1.0
- Licencia : Sin licencia conocida
- Versión : 1.0.0
- Divisiones :
Separar | Ejemplos |
---|---|
'labelled_dev' | 37566 |
'paper_dev' | 18999 |
'paper_test' | 18567 |
'train' | 311431 |
'unlabelled_dev' | 19998 |
'unlabelled_test' | 19998 |
- Características :
{
"id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"claim": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"evidence_annotation_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"evidence_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"evidence_wiki_url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"evidence_sentence_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
v2.0
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:fever/v2.0')
- Descripción :
With billions of individual pages on the web providing information on almost every conceivable topic, we should have the ability to collect facts that answer almost every conceivable question. However, only a small fraction of this information is contained in structured sources (Wikidata, Freebase, etc.) – we are therefore limited by our ability to transform free-form text to structured knowledge. There is, however, another problem that has become the focus of a lot of recent research and media coverage: false information coming from unreliable sources. [1] [2]
The FEVER workshops are a venue for work in verifiable knowledge extraction and to stimulate progress in this direction.
FEVER V2.0
- Licencia : Sin licencia conocida
- Versión : 2.0.0
- Divisiones :
Separar | Ejemplos |
---|---|
'validation' | 2384 |
- Características :
{
"id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"claim": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"evidence_annotation_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"evidence_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"evidence_wiki_url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"evidence_sentence_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
páginas_wiki
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:fever/wiki_pages')
- Descripción :
With billions of individual pages on the web providing information on almost every conceivable topic, we should have the ability to collect facts that answer almost every conceivable question. However, only a small fraction of this information is contained in structured sources (Wikidata, Freebase, etc.) – we are therefore limited by our ability to transform free-form text to structured knowledge. There is, however, another problem that has become the focus of a lot of recent research and media coverage: false information coming from unreliable sources. [1] [2]
The FEVER workshops are a venue for work in verifiable knowledge extraction and to stimulate progress in this direction.
Wikipedia pages
- Licencia : Sin licencia conocida
- Versión : 1.0.0
- Divisiones :
Separar | Ejemplos |
---|---|
'wikipedia_pages' | 5416537 |
- Características :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lines": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}