ectr_cases

Referensi:

dugaan-pelanggaran-prediksi

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:ecthr_cases/alleged-violation-prediction')
  • Keterangan :
The ECtHR Cases dataset is designed for experimentation of neural judgment prediction and rationale extraction considering ECtHR cases.
  • Lisensi : CC BY-NC-SA (Creative Commons / Attribution-NonCommercial-ShareAlike)
  • Versi : 1.1.0
  • Perpecahan :
Membelah Contoh
'test' 1000
'train' 9000
'validation' 1000
  • Fitur :
{
    "facts": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "labels": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "silver_rationales": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "gold_rationales": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

prediksi pelanggaran

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:ecthr_cases/violation-prediction')
  • Keterangan :
The ECtHR Cases dataset is designed for experimentation of neural judgment prediction and rationale extraction considering ECtHR cases.
  • Lisensi : CC BY-NC-SA (Creative Commons / Attribution-NonCommercial-ShareAlike)
  • Versi : 1.1.0
  • Perpecahan :
Membelah Contoh
'test' 1000
'train' 9000
'validation' 1000
  • Fitur :
{
    "facts": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "labels": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "silver_rationales": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}