ecthr_cases

Ссылки:

предполагаемое-нарушение-прогнозирование

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:ecthr_cases/alleged-violation-prediction')
  • Описание :
The ECtHR Cases dataset is designed for experimentation of neural judgment prediction and rationale extraction considering ECtHR cases.
  • Лицензия : CC BY-NC-SA (Creative Commons/Attribution-NonCommercial-ShareAlike)
  • Версия : 1.1.0
  • Расколы :
Расколоть Примеры
'test' 1000
'train' 9000
'validation' 1000
  • Функции :
{
    "facts": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "labels": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "silver_rationales": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "gold_rationales": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

прогнозирование нарушения

Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:

ds = tfds.load('huggingface:ecthr_cases/violation-prediction')
  • Описание :
The ECtHR Cases dataset is designed for experimentation of neural judgment prediction and rationale extraction considering ECtHR cases.
  • Лицензия : CC BY-NC-SA (Creative Commons/Attribution-NonCommercial-ShareAlike)
  • Версия : 1.1.0
  • Расколы :
Расколоть Примеры
'test' 1000
'train' 9000
'validation' 1000
  • Функции :
{
    "facts": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "labels": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "silver_rationales": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}