הפניות:
en_de
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_de')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_tr
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_tr')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_fa
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_fa')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_sv-SE
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_sv-SE')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_mn
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_mn')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_zh-CN
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_zh-CN')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_cy
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_cy')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ca
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_ca')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_sl
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_sl')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_et
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_et')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_id
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_id')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ar
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_ar')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ta
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_ta')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_lv
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_lv')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ja
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/en_ja')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
fr_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/fr_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 14760 |
'train' | 207374 |
'validation' | 14760 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
de_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/de_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 13511 |
'train' | 127834 |
'validation' | 13511 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
es_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/es_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 13221 |
'train' | 79015 |
'validation' | 13221 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ca_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/ca_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 12730 |
'train' | 95854 |
'validation' | 12730 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
it_he
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/it_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 8951 |
'train' | 31698 |
'validation' | 8940 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ru_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/ru_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 6300 |
'train' | 12112 |
'validation' | 6110 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
zh-CN_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/zh-CN_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 4898 |
'train' | 7085 |
'validation' | 4843 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
pt_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/pt_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 4023 |
'train' | 9158 |
'validation' | 3318 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
fa_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/fa_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 3445 |
'train' | 53949 |
'validation' | 3445 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
et_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/et_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 1571 |
'train' | 1782 |
'validation' | 1576 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mn_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/mn_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 1759 |
'train' | 2067 |
'validation' | 1761 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nl_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/nl_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 1699 |
'train' | 7108 |
'validation' | 1699 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tr_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/tr_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 1629 |
'train' | 3966 |
'validation' | 1624 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ar_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/ar_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 1695 |
'train' | 2283 |
'validation' | 1758 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sv-SE_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/sv-SE_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 1595 |
'train' | 2160 |
'validation' | 1349 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
lv_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/lv_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 1629 |
'train' | 2337 |
'validation' | 1125 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sl_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/sl_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 360 |
'train' | 1843 |
'validation' | 509 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ta_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/ta_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 786 |
'train' | 1358 |
'validation' | 384 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ja_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/ja_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 684 |
'train' | 1119 |
'validation' | 635 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
id_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/id_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 844 |
'train' | 1243 |
'validation' | 792 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
cy_en
השתמש בפקודה הבאה כדי לטעון מערך נתונים זה ב-TFDS:
ds = tfds.load('huggingface:covost2/cy_en')
- תיאור :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- רישיון : אין רישיון ידוע
- גרסה : 1.0.0
- פיצולים :
לְפַצֵל | דוגמאות |
---|---|
'test' | 690 |
'train' | 1241 |
'validation' | 690 |
- תכונות :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}