covost2

مراجع:

ar_de

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_de')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_tr

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_tr')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_fa

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_fa')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_sv-SE

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_sv-SE')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_mn

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_mn')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_zh-CN

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_zh-CN')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_cy

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_cy')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_ca

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_ca')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_sl

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_sl')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_et

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_et')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_id

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_id')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_ar

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_ar')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_ta

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_ta')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_lv

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_lv')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_ja

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/en_ja')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 15531
'train' 289430
'validation' 15531
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

fr_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/fr_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 14760
'train' 207374
'validation' 14760
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

de_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/de_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 13511
'train' 127834
'validation' 13511
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

es_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/es_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 13221
'train' 79015
'validation' 13221
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ca_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/ca_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 12730
'train' 95854
'validation' 12730
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

it_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/it_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 8951
'train' 31698
'validation' 8940
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ru_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/ru_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 6300
'train' 12112
'validation' 6110
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

zh-CN_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/zh-CN_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 4898
'train' 7085
'validation' 4843
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pt_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/pt_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 4023
'train' 9158
'validation' 3318
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

fa_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/fa_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 3445
'train' 53949
'validation' 3445
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

et_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/et_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 1571
'train' 1782
'validation' 1576
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

mn_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/mn_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 1759
'train' 2067
'validation' 1761
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nl_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/nl_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 1699
'train' 7108
'validation' 1699
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

tr_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/tr_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 1629
'train' 3966
'validation' 1624
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/ar_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 1695
'train' 2283
'validation' 1758
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

SV-SE_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/sv-SE_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 1595
'train' 2160
'validation' 1349
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

lv_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/lv_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 1629
'train' 2337
'validation' 1125
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

sl_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/sl_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 360
'train' 1843
'validation' 509
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ta_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/ta_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 786
'train' 1358
'validation' 384
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ja_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/ja_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 684
'train' 1119
'validation' 635
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

id_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/id_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 844
'train' 1243
'validation' 792
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

cy_en

استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:

ds = tfds.load('huggingface:covost2/cy_en')
  • وصف :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • الترخيص : لا يوجد ترخيص معروف
  • الإصدار : 1.0.0
  • الإنشقاقات :
ينقسم أمثلة
'test' 690
'train' 1241
'validation' 690
  • سمات :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}