covost2

Referências:

en_de

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_de')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_tr

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_tr')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_fa

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_fa')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pt_sv-SE

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_sv-SE')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pt_mn

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_mn')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pt_zh-CN

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_zh-CN')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_cy

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_cy')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_ca

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_ca')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pt_sl

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_sl')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_et

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_et')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_id

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_id')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_ar

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_ar')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_ta

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_ta')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_lv

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_lv')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pt_ja

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/en_ja')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 15531
'train' 289430
'validation' 15531
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

fr_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/fr_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 14760
'train' 207374
'validation' 14760
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

de_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/de_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 13511
'train' 127834
'validation' 13511
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

es_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/es_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 13221
'train' 79015
'validation' 13221
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ca_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/ca_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 12730
'train' 95854
'validation' 12730
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

it_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/it_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 8951
'train' 31698
'validation' 8940
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ru_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/ru_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 6300
'train' 12112
'validation' 6110
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

zh-CN_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/zh-CN_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 4898
'train' 7085
'validation' 4843
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pt_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/pt_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 4023
'train' 9158
'validation' 3318
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

fa_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/fa_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 3445
'train' 53949
'validation' 3445
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

et_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/et_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 1571
'train' 1782
'validation' 1576
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

mn_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/mn_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 1759
'train' 2067
'validation' 1761
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nl_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/nl_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 1699
'train' 7108
'validation' 1699
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

tr_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/tr_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 1629
'train' 3966
'validation' 1624
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/ar_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 1695
'train' 2283
'validation' 1758
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

sv-SE_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/sv-SE_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 1595
'train' 2160
'validation' 1349
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

lv_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/lv_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 1629
'train' 2337
'validation' 1125
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

sl_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/sl_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 360
'train' 1843
'validation' 509
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ta_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/ta_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 786
'train' 1358
'validation' 384
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ja_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/ja_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 684
'train' 1119
'validation' 635
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

id_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/id_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 844
'train' 1243
'validation' 792
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

cy_en

Use o seguinte comando para carregar este conjunto de dados no TFDS:

ds = tfds.load('huggingface:covost2/cy_en')
  • Descrição :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozillas open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Licença : Nenhuma licença conhecida
  • Versão : 1.0.0
  • Divisões :
Dividir Exemplos
'test' 690
'train' 1241
'validation' 690
  • Características :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}