Riferimenti:
en_de
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_de')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
it_tr
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_tr')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_fa
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_fa')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_sv-SE
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_sv-SE')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_mn
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_mn')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_zh-CN
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_zh-CN')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_cy
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_cy')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ca
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_ca')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_sl
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_sl')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_et
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_et')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
it_id
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_id')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ar
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_ar')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ta
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_ta')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
it_lv
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_lv')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ja
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/en_ja')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
fr_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/fr_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 14760 |
'train' | 207374 |
'validation' | 14760 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
de_it
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/de_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 13511 |
'train' | 127834 |
'validation' | 13511 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
es_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/es_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 13221 |
'train' | 79015 |
'validation' | 13221 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ca_it
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/ca_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 12730 |
'train' | 95854 |
'validation' | 12730 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
it_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/it_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 8951 |
'train' | 31698 |
'validation' | 8940 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ru_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/ru_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 6300 |
'train' | 12112 |
'validation' | 6110 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
zh-CN_it
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/zh-CN_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 4898 |
'train' | 7085 |
'validation' | 4843 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
pt_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/pt_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 4023 |
'train' | 9158 |
'validation' | 3318 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
fa_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/fa_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 3445 |
'train' | 53949 |
'validation' | 3445 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
et_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/et_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 1571 |
'train' | 1782 |
'validation' | 1576 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mn_it
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/mn_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 1759 |
'train' | 2067 |
'validation' | 1761 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nl_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/nl_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 1699 |
'train' | 7108 |
'validation' | 1699 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tr_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/tr_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 1629 |
'train' | 3966 |
'validation' | 1624 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ar_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/ar_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 1695 |
'train' | 2283 |
'validation' | 1758 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sv-SE_it
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/sv-SE_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 1595 |
'train' | 2160 |
'validation' | 1349 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
lv_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/lv_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 1629 |
'train' | 2337 |
'validation' | 1125 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sl_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/sl_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 360 |
'train' | 1843 |
'validation' | 509 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ta_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/ta_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 786 |
'train' | 1358 |
'validation' | 384 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ja_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/ja_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 684 |
'train' | 1119 |
'validation' | 635 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
id_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/id_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 844 |
'train' | 1243 |
'validation' | 792 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
cy_en
Utilizzare il comando seguente per caricare questo set di dati in TFDS:
ds = tfds.load('huggingface:covost2/cy_en')
- Descrizione :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- Licenza : nessuna licenza conosciuta
- Versione : 1.0.0
- Divide :
Diviso | Esempi |
---|---|
'test' | 690 |
'train' | 1241 |
'validation' | 690 |
- Caratteristiche :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}