cos_e

References:

v1.0

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:cos_e/v1.0')
  • Description:
Common Sense Explanations (CoS-E) allows for training language models to
automatically generate explanations that can be used during training and
inference in a novel Commonsense Auto-Generated Explanation (CAGE) framework.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 7610
'validation' 950
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "choices": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "abstractive_explanation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "extractive_explanation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

v1.11

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:cos_e/v1.11')
  • Description:
Common Sense Explanations (CoS-E) allows for training language models to
automatically generate explanations that can be used during training and
inference in a novel Commonsense Auto-Generated Explanation (CAGE) framework.
  • License: No known license
  • Version: 1.11.0
  • Splits:
Split Examples
'train' 9741
'validation' 1221
  • Features:
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "choices": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "abstractive_explanation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "extractive_explanation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}