Referensi:
bahasa inggris_v4
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:conll2012_ontonotesv5/english_v4')
- Keterangan :
OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,
multilingual corpus manually annotated with syntactic, semantic and discourse information.
This dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.
It includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).
The source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.
See also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)
For more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 222 |
'train' | 1940 |
'validation' | 222 |
- Fitur :
{
"document_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentences": [
{
"part_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"words": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 49,
"names": [
"XX",
"``",
"$",
"''",
",",
"-LRB-",
"-RRB-",
".",
":",
"ADD",
"AFX",
"CC",
"CD",
"DT",
"EX",
"FW",
"HYPH",
"IN",
"JJ",
"JJR",
"JJS",
"LS",
"MD",
"NFP",
"NN",
"NNP",
"NNPS",
"NNS",
"PDT",
"POS",
"PRP",
"PRP$",
"RB",
"RBR",
"RBS",
"RP",
"SYM",
"TO",
"UH",
"VB",
"VBD",
"VBG",
"VBN",
"VBP",
"VBZ",
"WDT",
"WP",
"WP$",
"WRB"
],
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"parse_tree": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"predicate_lemmas": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"predicate_framenet_ids": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"word_senses": {
"feature": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"speaker": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"named_entities": {
"feature": {
"num_classes": 37,
"names": [
"O",
"B-PERSON",
"I-PERSON",
"B-NORP",
"I-NORP",
"B-FAC",
"I-FAC",
"B-ORG",
"I-ORG",
"B-GPE",
"I-GPE",
"B-LOC",
"I-LOC",
"B-PRODUCT",
"I-PRODUCT",
"B-DATE",
"I-DATE",
"B-TIME",
"I-TIME",
"B-PERCENT",
"I-PERCENT",
"B-MONEY",
"I-MONEY",
"B-QUANTITY",
"I-QUANTITY",
"B-ORDINAL",
"I-ORDINAL",
"B-CARDINAL",
"I-CARDINAL",
"B-EVENT",
"I-EVENT",
"B-WORK_OF_ART",
"I-WORK_OF_ART",
"B-LAW",
"I-LAW",
"B-LANGUAGE",
"I-LANGUAGE"
],
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"srl_frames": [
{
"verb": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"frames": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
],
"coref_spans": {
"feature": {
"feature": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"length": 3,
"id": null,
"_type": "Sequence"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
]
}
cina_v4
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:conll2012_ontonotesv5/chinese_v4')
- Keterangan :
OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,
multilingual corpus manually annotated with syntactic, semantic and discourse information.
This dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.
It includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).
The source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.
See also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)
For more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 166 |
'train' | 1391 |
'validation' | 172 |
- Fitur :
{
"document_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentences": [
{
"part_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"words": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 36,
"names": [
"X",
"AD",
"AS",
"BA",
"CC",
"CD",
"CS",
"DEC",
"DEG",
"DER",
"DEV",
"DT",
"ETC",
"FW",
"IJ",
"INF",
"JJ",
"LB",
"LC",
"M",
"MSP",
"NN",
"NR",
"NT",
"OD",
"ON",
"P",
"PN",
"PU",
"SB",
"SP",
"URL",
"VA",
"VC",
"VE",
"VV"
],
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"parse_tree": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"predicate_lemmas": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"predicate_framenet_ids": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"word_senses": {
"feature": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"speaker": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"named_entities": {
"feature": {
"num_classes": 37,
"names": [
"O",
"B-PERSON",
"I-PERSON",
"B-NORP",
"I-NORP",
"B-FAC",
"I-FAC",
"B-ORG",
"I-ORG",
"B-GPE",
"I-GPE",
"B-LOC",
"I-LOC",
"B-PRODUCT",
"I-PRODUCT",
"B-DATE",
"I-DATE",
"B-TIME",
"I-TIME",
"B-PERCENT",
"I-PERCENT",
"B-MONEY",
"I-MONEY",
"B-QUANTITY",
"I-QUANTITY",
"B-ORDINAL",
"I-ORDINAL",
"B-CARDINAL",
"I-CARDINAL",
"B-EVENT",
"I-EVENT",
"B-WORK_OF_ART",
"I-WORK_OF_ART",
"B-LAW",
"I-LAW",
"B-LANGUAGE",
"I-LANGUAGE"
],
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"srl_frames": [
{
"verb": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"frames": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
],
"coref_spans": {
"feature": {
"feature": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"length": 3,
"id": null,
"_type": "Sequence"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
]
}
arab_v4
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:conll2012_ontonotesv5/arabic_v4')
- Keterangan :
OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,
multilingual corpus manually annotated with syntactic, semantic and discourse information.
This dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.
It includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).
The source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.
See also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)
For more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 44 |
'train' | 359 |
'validation' | 44 |
- Fitur :
{
"document_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentences": [
{
"part_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"words": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"parse_tree": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"predicate_lemmas": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"predicate_framenet_ids": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"word_senses": {
"feature": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"speaker": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"named_entities": {
"feature": {
"num_classes": 37,
"names": [
"O",
"B-PERSON",
"I-PERSON",
"B-NORP",
"I-NORP",
"B-FAC",
"I-FAC",
"B-ORG",
"I-ORG",
"B-GPE",
"I-GPE",
"B-LOC",
"I-LOC",
"B-PRODUCT",
"I-PRODUCT",
"B-DATE",
"I-DATE",
"B-TIME",
"I-TIME",
"B-PERCENT",
"I-PERCENT",
"B-MONEY",
"I-MONEY",
"B-QUANTITY",
"I-QUANTITY",
"B-ORDINAL",
"I-ORDINAL",
"B-CARDINAL",
"I-CARDINAL",
"B-EVENT",
"I-EVENT",
"B-WORK_OF_ART",
"I-WORK_OF_ART",
"B-LAW",
"I-LAW",
"B-LANGUAGE",
"I-LANGUAGE"
],
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"srl_frames": [
{
"verb": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"frames": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
],
"coref_spans": {
"feature": {
"feature": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"length": 3,
"id": null,
"_type": "Sequence"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
]
}
bahasa inggris_v12
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:conll2012_ontonotesv5/english_v12')
- Keterangan :
OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,
multilingual corpus manually annotated with syntactic, semantic and discourse information.
This dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.
It includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).
The source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.
See also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)
For more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above.
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 1200 |
'train' | 10539 |
'validation' | 1370 |
- Fitur :
{
"document_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentences": [
{
"part_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"words": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 51,
"names": [
"XX",
"``",
"$",
"''",
"*",
",",
"-LRB-",
"-RRB-",
".",
":",
"ADD",
"AFX",
"CC",
"CD",
"DT",
"EX",
"FW",
"HYPH",
"IN",
"JJ",
"JJR",
"JJS",
"LS",
"MD",
"NFP",
"NN",
"NNP",
"NNPS",
"NNS",
"PDT",
"POS",
"PRP",
"PRP$",
"RB",
"RBR",
"RBS",
"RP",
"SYM",
"TO",
"UH",
"VB",
"VBD",
"VBG",
"VBN",
"VBP",
"VBZ",
"VERB",
"WDT",
"WP",
"WP$",
"WRB"
],
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"parse_tree": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"predicate_lemmas": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"predicate_framenet_ids": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"word_senses": {
"feature": {
"dtype": "float32",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"speaker": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"named_entities": {
"feature": {
"num_classes": 37,
"names": [
"O",
"B-PERSON",
"I-PERSON",
"B-NORP",
"I-NORP",
"B-FAC",
"I-FAC",
"B-ORG",
"I-ORG",
"B-GPE",
"I-GPE",
"B-LOC",
"I-LOC",
"B-PRODUCT",
"I-PRODUCT",
"B-DATE",
"I-DATE",
"B-TIME",
"I-TIME",
"B-PERCENT",
"I-PERCENT",
"B-MONEY",
"I-MONEY",
"B-QUANTITY",
"I-QUANTITY",
"B-ORDINAL",
"I-ORDINAL",
"B-CARDINAL",
"I-CARDINAL",
"B-EVENT",
"I-EVENT",
"B-WORK_OF_ART",
"I-WORK_OF_ART",
"B-LAW",
"I-LAW",
"B-LANGUAGE",
"I-LANGUAGE"
],
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"srl_frames": [
{
"verb": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"frames": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
],
"coref_spans": {
"feature": {
"feature": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"length": 3,
"id": null,
"_type": "Sequence"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
]
}