Références :
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:conceptual_captions')
- Description :
Image captioning dataset
The resulting dataset (version 1.1) has been split into Training, Validation, and Test splits. The Training split consists of 3,318,333 image-URL/caption pairs, with a total number of 51,201 total token types in the captions (i.e., total vocabulary). The average number of tokens per captions is 10.3 (standard deviation of 4.5), while the median is 9.0 tokens per caption. The Validation split consists of 15,840 image-URL/caption pairs, with similar statistics.
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'train' | 3318333 |
'validation' | 15840 |
- Caractéristiques :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"caption": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"url": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sans étiquette
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:conceptual_captions/unlabeled')
- Description :
Google's Conceptual Captions dataset has more than 3 million images, paired with natural-language captions.
In contrast with the curated style of the MS-COCO images, Conceptual Captions images and their raw descriptions are harvested from the web,
and therefore represent a wider variety of styles. The raw descriptions are harvested from the Alt-text HTML attribute associated with web images.
The authors developed an automatic pipeline that extracts, filters, and transforms candidate image/caption pairs, with the goal of achieving a balance of cleanliness,
informativeness, fluency, and learnability of the resulting captions.
Licence : L'ensemble de données peut être utilisé librement à toutes fins, bien que la mention de Google LLC ("Google") comme source de données serait appréciée. L'ensemble de données est fourni « TEL QUEL » sans aucune garantie, expresse ou implicite. Google décline toute responsabilité pour tout dommage, direct ou indirect, résultant de l'utilisation de l'ensemble de données.
Version : 0.0.0
Divisions :
Diviser | Exemples |
---|---|
'train' | 3318333 |
'validation' | 15840 |
- Caractéristiques :
{
"image_url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"caption": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
étiqueté
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:conceptual_captions/labeled')
- Description :
Google's Conceptual Captions dataset has more than 3 million images, paired with natural-language captions.
In contrast with the curated style of the MS-COCO images, Conceptual Captions images and their raw descriptions are harvested from the web,
and therefore represent a wider variety of styles. The raw descriptions are harvested from the Alt-text HTML attribute associated with web images.
The authors developed an automatic pipeline that extracts, filters, and transforms candidate image/caption pairs, with the goal of achieving a balance of cleanliness,
informativeness, fluency, and learnability of the resulting captions.
Licence : L'ensemble de données peut être utilisé librement à toutes fins, bien que la mention de Google LLC ("Google") comme source de données serait appréciée. L'ensemble de données est fourni « TEL QUEL » sans aucune garantie, expresse ou implicite. Google décline toute responsabilité pour tout dommage, direct ou indirect, résultant de l'utilisation de l'ensemble de données.
Version : 0.0.0
Divisions :
Diviser | Exemples |
---|---|
'train' | 2007090 |
- Caractéristiques :
{
"image_url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"caption": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"MIDs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"confidence_scores": {
"feature": {
"dtype": "float64",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}