catalonia_independence

Tài liệu tham khảo:

xứ Catalan

Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:

ds = tfds.load('huggingface:catalonia_independence/catalan')
  • Sự miêu tả :
This dataset contains two corpora in Spanish and Catalan that consist of annotated Twitter messages for automatic stance detection. The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia.

Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia.
  • Giấy phép : CC BY-NC-SA 4.0
  • Phiên bản : 1.1.0
  • Chia tách :
Tách ra Ví dụ
'test' 2010
'train' 6028
'validation' 2010
  • Đặc trưng :
{
    "id_str": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "TWEET": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "LABEL": {
        "num_classes": 3,
        "names": [
            "AGAINST",
            "FAVOR",
            "NEUTRAL"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}

người Tây Ban Nha

Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:

ds = tfds.load('huggingface:catalonia_independence/spanish')
  • Sự miêu tả :
This dataset contains two corpora in Spanish and Catalan that consist of annotated Twitter messages for automatic stance detection. The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia.

Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia.
  • Giấy phép : CC BY-NC-SA 4.0
  • Phiên bản : 1.1.0
  • Chia tách :
Tách ra Ví dụ
'test' 2016
'train' 6046
'validation' 2015
  • Đặc trưng :
{
    "id_str": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "TWEET": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "LABEL": {
        "num_classes": 3,
        "names": [
            "AGAINST",
            "FAVOR",
            "NEUTRAL"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}