Referencias:
isla_adjunta
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/adjunct_island')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
anaphor_gender_agreement
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/anaphor_gender_agreement')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
anaphor_number_agreement
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/anaphor_number_agreement')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
animar_sujeto_pasivo
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/animate_subject_passive')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
animar_sujeto_trans
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/animate_subject_trans')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
causante
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/causative')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
complejo_NP_isla
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/complex_NP_island')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
coordinar_estructura_restricción_complejo_rama_izquierda
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/coordinate_structure_constraint_complex_left_branch')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
coordinar_estructura_restricción_objeto_extracción
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/coordinate_structure_constraint_object_extraction')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
determinante_sustantivo_acuerdo_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
determinante_sustantivo_acuerdo_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
determinante_sustantivo_acuerdo_irregular_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_irregular_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
determinante_sustantivo_acuerdo_irregular_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_irregular_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
determinante_sustantivo_acuerdo_con_adj_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_with_adj_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
determinante_sustantivo_acuerdo_con_adj_irregular_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_with_adj_irregular_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
determinante_sustantivo_acuerdo_con_adj_irregular_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_with_adj_irregular_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
determinante_sustantivo_acuerdo_con_adjetivo_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_with_adjective_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
distractor_agreement_relational_noun
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/distractor_agreement_relational_noun')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
cláusula_relativa_de_acuerdo_de_distracción
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/distractor_agreement_relative_clause')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
soltar_argumento
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/drop_argument')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
puntos suspensivos_n_bar_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/ellipsis_n_bar_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
elipsis_n_bar_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/ellipsis_n_bar_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
existencial_allí_objeto_levantamiento
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/existential_there_object_raising')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
existencial_hay_cuantificadores_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/existential_there_quantifiers_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
existencial_hay_cuantificadores_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/existential_there_quantifiers_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
existencial_allí_sujeto_criando
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/existential_there_subject_raising')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
palabrota_es_objeto_levantando
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/expletive_it_object_raising')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
incoativo
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/inchoative')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
intransitivo
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/intransitive')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
irregular_past_participle_adjetives
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/irregular_past_participle_adjectives')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
verbos_participio_pasado_irregular
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/irregular_past_participle_verbs')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
irregular_plural_sujeto_verbo_acuerdo_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/irregular_plural_subject_verb_agreement_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
irregular_plural_sujeto_verbo_acuerdo_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/irregular_plural_subject_verb_agreement_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
rama_izquierda_isla_echo_pregunta
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/left_branch_island_echo_question')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
rama_izquierda_isla_simple_pregunta
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/left_branch_island_simple_question')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
matrix_question_npi_licenciador_presente
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/matrix_question_npi_licensor_present')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
npi_present_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/npi_present_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
npi_present_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/npi_present_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
only_npi_licenciador_presente
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/only_npi_licensor_present')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
only_npi_scope
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/only_npi_scope')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
pasivo_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/passive_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
pasivo_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/passive_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
principio_A_c_comando
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/principle_A_c_command')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
principio_A_caso_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/principle_A_case_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
principio_A_caso_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/principle_A_case_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
principio_A_dominio_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/principle_A_domain_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
principio_A_dominio_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/principle_A_domain_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
principio_A_dominio_3
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/principle_A_domain_3')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
principio_A_reconstrucción
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/principle_A_reconstruction')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
regular_plural_sujeto_verbo_acuerdo_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/regular_plural_subject_verb_agreement_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
regular_plural_sujeto_verbo_acuerdo_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/regular_plural_subject_verb_agreement_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
sentential_negation_npi_licenciador_presente
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/sentential_negation_npi_licensor_present')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
sentential_negation_npi_scope
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/sentential_negation_npi_scope')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
sentencia_sujeto_isla
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/sentential_subject_island')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
cuantificadores_superlativos_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/superlative_quantifiers_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
cuantificadores_superlativos_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/superlative_quantifiers_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
resistente_vs_criando_1
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/tough_vs_raising_1')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
resistente_vs_criando_2
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/tough_vs_raising_2')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
transitivo
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/transitive')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
isla_donde
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/wh_island')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_questions_object_gap
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/wh_questions_object_gap')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_questions_subject_gap
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/wh_questions_subject_gap')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_questions_subject_gap_long_distance
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/wh_questions_subject_gap_long_distance')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_vs_that_no_gap
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/wh_vs_that_no_gap')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_vs_that_no_gap_long_distance
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/wh_vs_that_no_gap_long_distance')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_vs_that_with_gap
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/wh_vs_that_with_gap')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_vs_that_with_gap_long_distance
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:blimp/wh_vs_that_with_gap_long_distance')
- Descripción :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- Licencia : Sin licencia conocida
- Versión : 0.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 1000 |
- Características :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}