सन्दर्भ:
सहायक_द्वीप
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/adjunct_island')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अनाफोर_लिंग_समझौता
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/anaphor_gender_agreement')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अनाफोर_संख्या_समझौता
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/anaphor_number_agreement')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
चेतन_विषय_निष्क्रिय
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/animate_subject_passive')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
चेतन_विषय_ट्रांस
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/animate_subject_trans')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
प्रेरणा
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/causative')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
जटिल_एनपी_द्वीप
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/complex_NP_island')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
समन्वय_संरचना_बाधा_जटिल_बाएं_शाखा
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/coordinate_structure_constraint_complex_left_branch')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
समन्वय_संरचना_बाधा_वस्तु_निष्कर्षण
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/coordinate_structure_constraint_object_extraction')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
निर्धारक_संज्ञा_समझौता_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
निर्धारक_संज्ञा_समझौता_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
निर्धारक_संज्ञा_समझौता_अनियमित_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_irregular_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
निर्धारक_संज्ञा_समझौता_अनियमित_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_irregular_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
निर्धारक_संज्ञा_सहमति_के_साथ_adj_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_with_adj_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
निर्धारक_संज्ञा_समझौता_साथ_adj_अनियमित_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_with_adj_irregular_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
निर्धारक_संज्ञा_समझौता_साथ_adj_अनियमित_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_with_adj_irregular_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
निर्धारक_संज्ञा_सहमति_सहित_विशेषण_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/determiner_noun_agreement_with_adjective_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
ध्यान भटकाने वाला_समझौता_संबंधपरक_संज्ञा
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/distractor_agreement_relational_noun')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
ध्यान भटकाने वाला_समझौता_सापेक्ष_खंड
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/distractor_agreement_relative_clause')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
ड्रॉप_तर्क
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/drop_argument')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
एलिप्सिस_एन_बार_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/ellipsis_n_bar_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
एलिप्सिस_एन_बार_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/ellipsis_n_bar_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अस्तित्व_वहां_वस्तु_उठाना
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/existential_there_object_raising')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अस्तित्व_वहाँ_मात्राकारक_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/existential_there_quantifiers_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अस्तित्व_वहाँ_मात्राकारक_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/existential_there_quantifiers_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अस्तित्व_वहाँ_विषय_उठाना
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/existential_there_subject_raising')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अपशब्द_यह_वस्तु_उठाना
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/expletive_it_object_raising')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अप्रभावी
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/inchoative')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अकर्मक
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/intransitive')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अनियमित_अतीत_कृदंत_विशेषण
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/irregular_past_participle_adjectives')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अनियमित_अतीत_कृदंत_क्रियाएँ
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/irregular_past_participle_verbs')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अनियमित_बहुवचन_विषय_क्रिया_सहमति_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/irregular_plural_subject_verb_agreement_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अनियमित_बहुवचन_विषय_क्रिया_सहमति_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/irregular_plural_subject_verb_agreement_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
बाईं_शाखा_द्वीप_प्रतिध्वनि_प्रश्न
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/left_branch_island_echo_question')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
बाएँ_शाखा_द्वीप_सरल_प्रश्न
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/left_branch_island_simple_question')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
मैट्रिक्स_प्रश्न_एनपीआई_लाइसेंसर_वर्तमान
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/matrix_question_npi_licensor_present')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
npi_present_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/npi_present_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
npi_present_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/npi_present_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
केवल_npi_लाइसेंसकर्ता_वर्तमान
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/only_npi_licensor_present')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
केवल_एनपीआई_स्कोप
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/only_npi_scope')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
निष्क्रिय_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/passive_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
निष्क्रिय_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/passive_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सिद्धांत_ए_सी_कमांड
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/principle_A_c_command')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सिद्धांत_ए_केस_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/principle_A_case_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सिद्धांत_ए_केस_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/principle_A_case_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सिद्धांत_ए_डोमेन_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/principle_A_domain_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सिद्धांत_ए_डोमेन_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/principle_A_domain_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सिद्धांत_ए_डोमेन_3
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/principle_A_domain_3')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सिद्धांत_ए_पुनर्निर्माण
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/principle_A_reconstruction')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
नियमित_बहुवचन_विषय_क्रिया_सहमति_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/regular_plural_subject_verb_agreement_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
नियमित_बहुवचन_विषय_क्रिया_समझौता_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/regular_plural_subject_verb_agreement_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सेंटेंशियल_नेगेशन_एनपीआई_लाइसेंसर_प्रेजेंट
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/sentential_negation_npi_licensor_present')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सेंटेंशियल_नेगेशन_एनपीआई_स्कोप
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/sentential_negation_npi_scope')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सेंटेंशियल_सब्जेक्ट_आइलैंड
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/sentential_subject_island')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अतिशयोक्तिपूर्ण_मात्राकारक_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/superlative_quantifiers_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
अतिशयोक्तिपूर्ण_मात्राकारक_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/superlative_quantifiers_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
कठिन_बनाम_उठाना_1
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/tough_vs_raising_1')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
कठिन_बनाम_उठाना_2
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/tough_vs_raising_2')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
सकर्मक
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/transitive')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_द्वीप
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/wh_island')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_questions_object_gap
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/wh_questions_object_gap')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_questions_subject_gap
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/wh_questions_subject_gap')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_questions_subject_gap_long_distance
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/wh_questions_subject_gap_long_distance')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_vs_that_no_gap
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/wh_vs_that_no_gap')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
wh_vs_that_no_gap_long_distance
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/wh_vs_that_no_gap_long_distance')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
जो_बनाम_वह_अंतराल_के_साथ_है
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/wh_vs_that_with_gap')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}
जो_बनाम_वह_अंतराल_लंबी_दूरी_के_साथ_है
इस डेटासेट को TFDS में लोड करने के लिए निम्नलिखित कमांड का उपयोग करें:
ds = tfds.load('huggingface:blimp/wh_vs_that_with_gap_long_distance')
- विवरण :
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
- लाइसेंस : कोई ज्ञात लाइसेंस नहीं
- संस्करण : 0.1.0
- विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 1000 |
- विशेषताएँ :
{
"sentence_good": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence_bad": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"field": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"linguistics_term": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"UID": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"simple_LM_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"one_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"two_prefix_method": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"lexically_identical": {
"dtype": "bool",
"id": null,
"_type": "Value"
},
"pair_id": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
}