Referencje:
bc2gm_corpus
Użyj następującego polecenia, aby załadować ten zestaw danych do TFDS:
ds = tfds.load('huggingface:bc2gm_corpus/bc2gm_corpus')
- Opis :
Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop.
In this task participants designed systems to identify substrings in sentences corresponding to gene name mentions.
A variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721.
Here we present brief descriptions of all the methods used and a statistical analysis of the results.
We also demonstrate that, by combining the results from all submissions, an F score of 0.9066 is feasible,
and furthermore that the best result makes use of the lowest scoring submissions.
For more details, see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559986/
The original dataset can be downloaded from: https://biocreative.bioinformatics.udel.edu/resources/corpora/biocreative-ii-corpus/
This dataset has been converted to CoNLL format for NER using the following tool: https://github.com/spyysalo/standoff2conll
- Licencja : Brak znanej licencji
- Wersja : 1.0.0
- Podziały :
Podział | Przykłady |
---|---|
'test' | 5001 |
'train' | 12501 |
'validation' | 2501 |
- Cechy :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 3,
"names": [
"O",
"B-GENE",
"I-GENE"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}