مراجع:
amttl
برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:
ds = tfds.load('huggingface:amttl/amttl')
- توضیحات :
Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance drop
when dealing with domain text, especially for a domain with lots of special terms and diverse
writing styles, such as the biomedical domain. However, building domain-specific CWS requires
extremely high annotation cost. In this paper, we propose an approach by exploiting domain-invariant
knowledge from high resource to low resource domains. Extensive experiments show that our mode
achieves consistently higher accuracy than the single-task CWS and other transfer learning
baselines, especially when there is a large disparity between source and target domains.
This dataset is the accompanied medical Chinese word segmentation (CWS) dataset.
The tags are in BIES scheme.
For more details see https://www.aclweb.org/anthology/C18-1307/
- مجوز : مجوز شناخته شده ای وجود ندارد
- نسخه : 1.0.0
- تقسیم ها :
تقسیم کنید | نمونه ها |
---|---|
'test' | 908 |
'train' | 3063 |
'validation' | 822 |
- ویژگی ها :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"tags": {
"feature": {
"num_classes": 4,
"names": [
"B",
"I",
"E",
"S"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}