- คำอธิบาย :
งานการจัดการครัวเรือนที่หลากหลาย
หน้าแรก : https://ut-austin-rpl.github.io/MUTEX/
ซอร์สโค้ด :
tfds.robotics.rtx.UtaustinMutex
รุ่น :
-
0.1.0
(ค่าเริ่มต้น): การเปิดตัวครั้งแรก
-
ขนาดการดาวน์โหลด :
Unknown size
ขนาดชุดข้อมูล :
20.79 GiB
แคชอัตโนมัติ ( เอกสาร ): No
แยก :
แยก | ตัวอย่าง |
---|---|
'train' | 1,500 |
- โครงสร้างคุณสมบัติ :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [6x end effector delta pose, 1x gripper position]),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(24,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper position, 16x robot end-effector homogeneous matrix].),
'wrist_image': Image(shape=(128, 128, 3), dtype=uint8, description=Wrist camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- เอกสารคุณสมบัติ :
คุณสมบัติ | ระดับ | รูปร่าง | ประเภทD | คำอธิบาย |
---|---|---|---|---|
คุณสมบัติDict | ||||
ตอนที่_ข้อมูลเมตา | คุณสมบัติDict | |||
ตอนที่_metadata/file_path | ข้อความ | เชือก | เส้นทางไปยังไฟล์ข้อมูลต้นฉบับ | |
ขั้นตอน | ชุดข้อมูล | |||
ขั้นตอน/การดำเนินการ | เทนเซอร์ | (7,) | ลอย32 | การกระทำของหุ่นยนต์ ประกอบด้วย [ท่าเดลต้าเอฟเฟกต์ปลาย 6x, ตำแหน่งกริปเปอร์ 1x] |
ขั้นตอน/ส่วนลด | สเกลาร์ | ลอย32 | ส่วนลดหากมีให้ ค่าเริ่มต้นคือ 1 | |
ขั้นตอน/is_first | เทนเซอร์ | บูล | ||
ขั้นตอน/is_last | เทนเซอร์ | บูล | ||
ขั้นตอน/is_terminal | เทนเซอร์ | บูล | ||
ขั้นตอน/ภาษา_embedding | เทนเซอร์ | (512,) | ลอย32 | การฝังภาษาโคน่า ดู https://tfhub.dev/google/universal-sentence-encoder-large/5 |
ขั้นตอน/Language_instruction | ข้อความ | เชือก | คำแนะนำภาษาโดยละเอียดสำหรับแต่ละงาน | |
ขั้นตอน/การสังเกต | คุณสมบัติDict | |||
ขั้นตอน/การสังเกต/ภาพ | ภาพ | (128, 128, 3) | uint8 | การสังเกต RGB ของกล้องหลัก |
ขั้นตอน/การสังเกต/สถานะ | เทนเซอร์ | (24,) | ลอย32 | สถานะของหุ่นยนต์ประกอบด้วย [7x มุมข้อต่อของหุ่นยนต์, ตำแหน่งกริปเปอร์ 1x, เมทริกซ์เนื้อเดียวกันเอฟเฟกต์ปลายหุ่นยนต์ 16x] |
ขั้นตอน/การสังเกต/wrist_image | ภาพ | (128, 128, 3) | uint8 | การสังเกต RGB ของกล้องข้อมือ |
ขั้นตอน/รางวัล | สเกลาร์ | ลอย32 | รางวัลหากมีให้ 1 ในขั้นตอนสุดท้ายสำหรับการสาธิต |
คีย์ภายใต้การดูแล (ดู
as_supervised
doc ):None
รูปภาพ ( tfds.show_examples ): ไม่รองรับ
ตัวอย่าง ( tfds.as_dataframe ): หายไป
การอ้างอิง :
@inproceedings{
shah2023mutex,
title={ {MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
author={Rutav Shah and Roberto Mart{\'\i}n-Mart{\'\i}n and Yuke Zhu},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=PwqiqaaEzJ}
}