- 설명 :
UnifiedQA 벤치마크는 다양한 형식과 다양한 복잡한 언어 현상을 대상으로 하는 20개의 주요 QA(질문 응답) 데이터 세트(각각 여러 버전이 있을 수 있음)로 구성됩니다. 이러한 데이터 세트는 추출 QA, 추상 QA, 객관식 QA 및 예/아니오 QA를 포함하여 여러 형식/카테고리로 그룹화됩니다. 또한 대비 세트는 여러 데이터 세트에 사용됩니다("대비 세트 "로 표시됨). 이러한 평가 세트는 원래 데이터 세트의 일반적인 패턴에서 벗어나 전문가가 생성한 섭동입니다. 증거 단락과 함께 제공되지 않는 여러 데이터 세트의 경우 두 가지 변형이 포함됩니다. 하나는 데이터 세트가 있는 그대로 사용되는 것이고 다른 하나는 "_ir" 태그로 표시된 추가 증거로 정보 검색 시스템을 통해 가져온 단락을 사용하는 것입니다.
자세한 내용은 https://github.com/allenai/unifiedqa 에서 확인할 수 있습니다.
소스 코드 :
tfds.text.unifiedqa.UnifiedQA
버전 :
-
1.0.0
(기본값): 최초 릴리스.
-
기능 구조 :
FeaturesDict({
'input': string,
'output': string,
})
- 기능 문서 :
특징 | 수업 | 모양 | D타입 | 설명 |
---|---|---|---|---|
풍모Dict | ||||
입력 | 텐서 | 끈 | ||
산출 | 텐서 | 끈 |
감독된 키 (
as_supervised
문서 참조):None
그림 ( tfds.show_examples ): 지원되지 않습니다.
unified_qa/ai2_science_elementary(기본 구성)
구성 설명 : AI2 과학 질문 데이터 세트는 미국의 초등학교 및 중학교 학년 수준의 학생 평가에 사용되는 질문으로 구성됩니다. 각 질문은 4방향 객관식 형식이며 다이어그램 요소를 포함하거나 포함하지 않을 수 있습니다. 이 세트는 초등학교 학년 수준에서 사용되는 질문으로 구성되어 있습니다.
다운로드 크기 :
345.59 KiB
데이터 세트 크기 :
390.02 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 542 |
'train' | 623 |
'validation' | 123 |
- 예 ( tfds.as_dataframe ):
- 인용 :
http://data.allenai.org/ai2-science-questions
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/ai2_science_middle
구성 설명 : AI2 과학 질문 데이터 세트는 미국의 초등학교 및 중학교 학년 수준의 학생 평가에 사용되는 질문으로 구성됩니다. 각 질문은 4방향 객관식 형식이며 다이어그램 요소를 포함하거나 포함하지 않을 수 있습니다. 이 세트는 중학교 수준에서 사용되는 질문으로 구성되어 있습니다.
다운로드 크기 :
428.41 KiB
데이터 세트 크기 :
477.40 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 679 |
'train' | 605 |
'validation' | 125 |
- 예 ( tfds.as_dataframe ):
- 인용 :
http://data.allenai.org/ai2-science-questions
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/ambigqa
구성 설명 : AmbigQA는 그럴듯한 답변을 모두 찾은 다음 각 답변에 대한 질문을 다시 작성하여 모호성을 해결하는 오픈 도메인 질문 답변 작업입니다.
다운로드 크기 :
2.27 MiB
데이터 세트 크기 :
3.04 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 19,806 |
'validation' | 5,674 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{min-etal-2020-ambigqa,
title = "{A}mbig{QA}: Answering Ambiguous Open-domain Questions",
author = "Min, Sewon and
Michael, Julian and
Hajishirzi, Hannaneh and
Zettlemoyer, Luke",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.466",
doi = "10.18653/v1/2020.emnlp-main.466",
pages = "5783--5797",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_easy
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "쉬운" 질문으로 구성됩니다.
다운로드 크기 :
1.24 MiB
데이터 세트 크기 :
1.42 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 2,376 |
'train' | 2,251 |
'validation' | 570 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_easy_dev
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "쉬운" 질문으로 구성됩니다.
다운로드 크기 :
1.24 MiB
데이터 세트 크기 :
1.42 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 2,376 |
'train' | 2,251 |
'validation' | 570 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_easy_with_ir
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "쉬운" 질문으로 구성됩니다. 이 버전에는 추가 증거로 정보 검색 시스템을 통해 가져온 단락이 포함되어 있습니다.
다운로드 크기 :
7.00 MiB
데이터 세트 크기 :
7.17 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 2,376 |
'train' | 2,251 |
'validation' | 570 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_easy_with_ir_dev
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "쉬운" 질문으로 구성됩니다. 이 버전에는 추가 증거로 정보 검색 시스템을 통해 가져온 단락이 포함되어 있습니다.
다운로드 크기 :
7.00 MiB
데이터 세트 크기 :
7.17 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 2,376 |
'train' | 2,251 |
'validation' | 570 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_hard
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "어려운" 질문으로 구성됩니다.
다운로드 크기 :
758.03 KiB
데이터 세트 크기 :
848.28 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,172 |
'train' | 1,119 |
'validation' | 299 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_hard_dev
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "어려운" 질문으로 구성됩니다.
다운로드 크기 :
758.03 KiB
데이터 세트 크기 :
848.28 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,172 |
'train' | 1,119 |
'validation' | 299 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_hard_with_ir
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "어려운" 질문으로 구성됩니다. 이 버전에는 추가 증거로 정보 검색 시스템을 통해 가져온 단락이 포함되어 있습니다.
다운로드 크기 :
3.53 MiB
데이터 세트 크기 :
3.62 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,172 |
'train' | 1,119 |
'validation' | 299 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_hard_with_ir_dev
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "어려운" 질문으로 구성됩니다. 이 버전에는 추가 증거로 정보 검색 시스템을 통해 가져온 단락이 포함되어 있습니다.
다운로드 크기 :
3.53 MiB
데이터 세트 크기 :
3.62 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,172 |
'train' | 1,119 |
'validation' | 299 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/boolq
구성 설명 : BoolQ는 예/아니오 질문에 대한 질문 응답 데이터 세트입니다. 이러한 질문은 자연스럽게 발생합니다. 즉흥적이고 제약이 없는 환경에서 생성됩니다. 각 예제는 선택적인 추가 컨텍스트로 페이지 제목이 있는 (질문, 구절, 답변)의 삼중 항입니다. 텍스트 쌍 분류 설정은 기존의 자연어 추론 작업과 유사합니다.
다운로드 크기 :
7.77 MiB
데이터 세트 크기 :
8.20 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 9,427 |
'validation' | 3,270 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{clark-etal-2019-boolq,
title = "{B}ool{Q}: Exploring the Surprising Difficulty of Natural Yes/No Questions",
author = "Clark, Christopher and
Lee, Kenton and
Chang, Ming-Wei and
Kwiatkowski, Tom and
Collins, Michael and
Toutanova, Kristina",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1300",
doi = "10.18653/v1/N19-1300",
pages = "2924--2936",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/boolq_np
구성 설명 : BoolQ는 예/아니오 질문에 대한 질문 응답 데이터 세트입니다. 이러한 질문은 자연스럽게 발생합니다. 즉흥적이고 제약이 없는 환경에서 생성됩니다. 각 예제는 선택적인 추가 컨텍스트로 페이지 제목이 있는 (질문, 구절, 답변)의 삼중 항입니다. 텍스트 쌍 분류 설정은 기존의 자연어 추론 작업과 유사합니다. 이 버전은 원래 버전에 자연스러운 섭동을 추가합니다.
다운로드 크기 :
10.80 MiB
데이터 세트 크기 :
11.40 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 9,727 |
'validation' | 7,596 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khashabi-etal-2020-bang,
title = "More Bang for Your Buck: Natural Perturbation for Robust Question Answering",
author = "Khashabi, Daniel and
Khot, Tushar and
Sabharwal, Ashish",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.12",
doi = "10.18653/v1/2020.emnlp-main.12",
pages = "163--170",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/commonsenseqa
구성 설명 : CommonsenseQA는 정답을 예측하기 위해 다양한 유형의 상식 지식이 필요한 새로운 객관식 질문 답변 데이터 세트입니다. 여기에는 하나의 정답과 네 개의 선택 항목이 있는 질문이 포함되어 있습니다.
다운로드 크기 :
1.79 MiB
데이터 세트 크기 :
2.19 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,140 |
'train' | 9,741 |
'validation' | 1,221 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{talmor-etal-2019-commonsenseqa,
title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
author = "Talmor, Alon and
Herzig, Jonathan and
Lourie, Nicholas and
Berant, Jonathan",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1421",
doi = "10.18653/v1/N19-1421",
pages = "4149--4158",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/commonsenseqa_test
구성 설명 : CommonsenseQA는 정답을 예측하기 위해 다양한 유형의 상식 지식이 필요한 새로운 객관식 질문 답변 데이터 세트입니다. 여기에는 하나의 정답과 네 개의 선택 항목이 있는 질문이 포함되어 있습니다.
다운로드 크기 :
1.79 MiB
데이터 세트 크기 :
2.19 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,140 |
'train' | 9,741 |
'validation' | 1,221 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{talmor-etal-2019-commonsenseqa,
title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
author = "Talmor, Alon and
Herzig, Jonathan and
Lourie, Nicholas and
Berant, Jonathan",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1421",
doi = "10.18653/v1/N19-1421",
pages = "4149--4158",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/contrast_sets_boolq
구성 설명 : BoolQ는 예/아니오 질문에 대한 질문 응답 데이터 세트입니다. 이러한 질문은 자연스럽게 발생합니다. 즉흥적이고 제약이 없는 환경에서 생성됩니다. 각 예제는 선택적인 추가 컨텍스트로 페이지 제목이 있는 (질문, 구절, 답변)의 삼중 항입니다. 텍스트 쌍 분류 설정은 기존의 자연어 추론 작업과 유사합니다. 이 버전은 대조 세트를 사용합니다. 이러한 평가 세트는 원래 데이터세트의 일반적인 패턴에서 벗어나 전문가가 생성한 섭동입니다.
다운로드 크기 :
438.51 KiB
데이터 세트 크기 :
462.35 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 340 |
'validation' | 340 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{clark-etal-2019-boolq,
title = "{B}ool{Q}: Exploring the Surprising Difficulty of Natural Yes/No Questions",
author = "Clark, Christopher and
Lee, Kenton and
Chang, Ming-Wei and
Kwiatkowski, Tom and
Collins, Michael and
Toutanova, Kristina",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1300",
doi = "10.18653/v1/N19-1300",
pages = "2924--2936",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/contrast_sets_drop
구성 설명 : DROP은 적대적으로 생성된 크라우드소싱 QA 벤치마크로, 시스템이 질문의 참조를 여러 입력 위치로 해결하고 여기에 대해 개별 작업(예: 추가, 계산 또는 정렬)을 수행해야 합니다. 이러한 작업에는 이전 데이터 세트에 필요한 것보다 단락 내용에 대한 훨씬 더 포괄적인 이해가 필요합니다. 이 버전은 대조 세트를 사용합니다. 이러한 평가 세트는 원래 데이터세트의 일반적인 패턴에서 벗어나 전문가가 생성한 섭동입니다.
다운로드 크기 :
2.20 MiB
데이터 세트 크기 :
2.26 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 947 |
'validation' | 947 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{dua-etal-2019-drop,
title = "{DROP}: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs",
author = "Dua, Dheeru and
Wang, Yizhong and
Dasigi, Pradeep and
Stanovsky, Gabriel and
Singh, Sameer and
Gardner, Matt",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1246",
doi = "10.18653/v1/N19-1246",
pages = "2368--2378",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/contrast_sets_quoref
구성 설명 : 이 데이터 세트는 독해 시스템의 공동 추론 추론 기능을 테스트합니다. Wikipedia의 단락에 대한 질문이 포함된 이 범위 선택 벤치마크에서 시스템은 질문에 답하기 위해 단락에서 적절한 범위를 선택하기 전에 하드 상호 참조를 해결해야 합니다. 이 버전은 대조 세트를 사용합니다. 이러한 평가 세트는 원래 데이터세트의 일반적인 패턴에서 벗어나 전문가가 생성한 섭동입니다.
다운로드 크기 :
2.60 MiB
데이터 세트 크기 :
2.65 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 700 |
'validation' | 700 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{dasigi-etal-2019-quoref,
title = "{Q}uoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning",
author = "Dasigi, Pradeep and
Liu, Nelson F. and
Marasovi{'c}, Ana and
Smith, Noah A. and
Gardner, Matt",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1606",
doi = "10.18653/v1/D19-1606",
pages = "5925--5932",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/contrast_sets_ropes
구성 설명 : 이 데이터 세트는 텍스트 구절의 지식을 새로운 상황에 적용하는 시스템의 능력을 테스트합니다. 인과적 또는 질적 관계(예: "동물 수분 매개자는 꽃의 수정 효율을 높입니다"), 이러한 배경을 사용하는 새로운 상황 및 관계의 효과에 대한 추론이 필요한 질문을 포함하는 배경 구절이 시스템에 제시됩니다. 상황의 맥락에서 배경 구절. 이 버전은 대조 세트를 사용합니다. 이러한 평가 세트는 원래 데이터 세트의 일반적인 패턴에서 벗어나 전문가가 생성한 섭동입니다.
다운로드 크기 :
1.97 MiB
데이터 세트 크기 :
2.04 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 974 |
'validation' | 974 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{lin-etal-2019-reasoning,
title = "Reasoning Over Paragraph Effects in Situations",
author = "Lin, Kevin and
Tafjord, Oyvind and
Clark, Peter and
Gardner, Matt",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5808",
doi = "10.18653/v1/D19-5808",
pages = "58--62",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/드롭
구성 설명 : DROP은 적대적으로 생성된 크라우드소싱 QA 벤치마크로, 시스템이 질문의 참조를 여러 입력 위치로 해결하고 여기에 대해 개별 작업(예: 추가, 계산 또는 정렬)을 수행해야 합니다. 이러한 작업에는 이전 데이터 세트에 필요한 것보다 단락 내용에 대한 훨씬 더 포괄적인 이해가 필요합니다.
다운로드 크기 :
105.18 MiB
데이터 세트 크기 :
108.16 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 77,399 |
'validation' | 9,536 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{dua-etal-2019-drop,
title = "{DROP}: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs",
author = "Dua, Dheeru and
Wang, Yizhong and
Dasigi, Pradeep and
Stanovsky, Gabriel and
Singh, Sameer and
Gardner, Matt",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1246",
doi = "10.18653/v1/N19-1246",
pages = "2368--2378",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/mctest
구성 설명 : MCTest는 가상 이야기에 대한 객관식 독해 질문에 답하는 기계를 필요로 하며 개방형 도메인 기계 이해라는 높은 수준의 목표를 직접 해결합니다. 독해력은 인과적 추론 및 세계 이해와 같은 고급 능력을 테스트할 수 있지만 객관식을 통해 여전히 명확한 측정 기준을 제공합니다. 허구이기 때문에 대답은 일반적으로 이야기 자체에서만 찾을 수 있습니다. 이야기와 질문은 또한 어린 아이가 이해할 수 있는 수준으로 신중하게 제한되어 작업에 필요한 세계 지식을 줄입니다.
다운로드 크기 :
2.14 MiB
데이터 세트 크기 :
2.20 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 1,480 |
'validation' | 320 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{richardson-etal-2013-mctest,
title = "{MCT}est: A Challenge Dataset for the Open-Domain Machine Comprehension of Text",
author = "Richardson, Matthew and
Burges, Christopher J.C. and
Renshaw, Erin",
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
month = oct,
year = "2013",
address = "Seattle, Washington, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D13-1020",
pages = "193--203",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/mctest_corrected_the_separator
구성 설명 : MCTest는 가상 이야기에 대한 객관식 독해 질문에 답하는 기계를 필요로 하며 개방형 도메인 기계 이해라는 높은 수준의 목표를 직접 해결합니다. 독해력은 인과적 추론 및 세계 이해와 같은 고급 능력을 테스트할 수 있지만 객관식을 통해 여전히 명확한 측정 기준을 제공합니다. 허구이기 때문에 대답은 일반적으로 이야기 자체에서만 찾을 수 있습니다. 이야기와 질문은 또한 어린 아이가 이해할 수 있는 수준으로 신중하게 제한되어 작업에 필요한 세계 지식을 줄입니다.
다운로드 크기 :
2.15 MiB
데이터 세트 크기 :
2.21 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 1,480 |
'validation' | 320 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{richardson-etal-2013-mctest,
title = "{MCT}est: A Challenge Dataset for the Open-Domain Machine Comprehension of Text",
author = "Richardson, Matthew and
Burges, Christopher J.C. and
Renshaw, Erin",
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
month = oct,
year = "2013",
address = "Seattle, Washington, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D13-1020",
pages = "193--203",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/multirc
구성 설명 : MultiRC는 여러 문장의 정보를 고려하여 질문에 답할 수 있는 독해 챌린지입니다. 이 챌린지에 대한 질문과 답변은 4단계 크라우드소싱 실험을 통해 모집 및 검증되었습니다. 데이터 세트에는 7개의 서로 다른 영역(초등학교 과학, 뉴스, 여행 가이드, 소설 이야기 등)의 문단에 대한 질문이 포함되어 있어 텍스트와 질문 문구에 언어적 다양성을 가져옵니다.
다운로드 크기 :
897.09 KiB
데이터 세트 크기 :
918.42 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 312 |
'validation' | 312 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khashabi-etal-2018-looking,
title = "Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences",
author = "Khashabi, Daniel and
Chaturvedi, Snigdha and
Roth, Michael and
Upadhyay, Shyam and
Roth, Dan",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1023",
doi = "10.18653/v1/N18-1023",
pages = "252--262",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/narrativeqa
구성 설명 : NarrativeQA는 특히 긴 문서에서 독해력을 테스트하도록 설계된 스토리 및 해당 질문의 영어 데이터 세트입니다.
다운로드 크기 :
308.28 MiB
데이터 세트 크기 :
311.22 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'test' | 21,114 |
'train' | 65,494 |
'validation' | 6,922 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kocisky-etal-2018-narrativeqa,
title = "The {N}arrative{QA} Reading Comprehension Challenge",
author = "Ko{
{c} }isk{'y}, Tom{'a}{
{s} } and
Schwarz, Jonathan and
Blunsom, Phil and
Dyer, Chris and
Hermann, Karl Moritz and
Melis, G{'a}bor and
Grefenstette, Edward",
journal = "Transactions of the Association for Computational Linguistics",
volume = "6",
year = "2018",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q18-1023",
doi = "10.1162/tacl_a_00023",
pages = "317--328",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/narrativeqa_dev
구성 설명 : NarrativeQA는 특히 긴 문서에서 독해력을 테스트하도록 설계된 스토리 및 해당 질문의 영어 데이터 세트입니다.
다운로드 크기 :
308.28 MiB
데이터 세트 크기 :
311.22 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'test' | 21,114 |
'train' | 65,494 |
'validation' | 6,922 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kocisky-etal-2018-narrativeqa,
title = "The {N}arrative{QA} Reading Comprehension Challenge",
author = "Ko{
{c} }isk{'y}, Tom{'a}{
{s} } and
Schwarz, Jonathan and
Blunsom, Phil and
Dyer, Chris and
Hermann, Karl Moritz and
Melis, G{'a}bor and
Grefenstette, Edward",
journal = "Transactions of the Association for Computational Linguistics",
volume = "6",
year = "2018",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q18-1023",
doi = "10.1162/tacl_a_00023",
pages = "317--328",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/natural_questions
구성 설명 : NQ 말뭉치에는 실제 사용자의 질문이 포함되어 있으며 QA 시스템이 질문에 대한 답변을 포함하거나 포함하지 않을 수 있는 전체 Wikipedia 문서를 읽고 이해해야 합니다. 실제 사용자 질문을 포함하고 솔루션이 답변을 찾기 위해 전체 페이지를 읽어야 한다는 요구 사항으로 인해 NQ는 이전 QA 데이터 세트보다 더 현실적이고 어려운 작업이 됩니다.
다운로드 크기 :
6.95 MiB
데이터 세트 크기 :
9.88 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 96,075 |
'validation' | 2,295 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/natural_questions_direct_ans
구성 설명 : NQ 말뭉치에는 실제 사용자의 질문이 포함되어 있으며 QA 시스템이 질문에 대한 답변을 포함하거나 포함하지 않을 수 있는 전체 Wikipedia 문서를 읽고 이해해야 합니다. 실제 사용자 질문을 포함하고 솔루션이 답변을 찾기 위해 전체 페이지를 읽어야 한다는 요구 사항으로 인해 NQ는 이전 QA 데이터 세트보다 더 현실적이고 어려운 작업이 됩니다. 이 버전은 직접 답변 질문으로 구성되어 있습니다.
다운로드 크기 :
6.82 MiB
데이터 세트 크기 :
10.19 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 6,468 |
'train' | 96,676 |
'validation' | 10,693 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/natural_questions_direct_ans_test
구성 설명 : NQ 말뭉치에는 실제 사용자의 질문이 포함되어 있으며 QA 시스템이 질문에 대한 답변을 포함하거나 포함하지 않을 수 있는 전체 Wikipedia 문서를 읽고 이해해야 합니다. 실제 사용자 질문을 포함하고 솔루션이 답변을 찾기 위해 전체 페이지를 읽어야 한다는 요구 사항으로 인해 NQ는 이전 QA 데이터 세트보다 더 현실적이고 어려운 작업이 됩니다. 이 버전은 직접 답변 질문으로 구성되어 있습니다.
다운로드 크기 :
6.82 MiB
데이터 세트 크기 :
10.19 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 6,468 |
'train' | 96,676 |
'validation' | 10,693 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/natural_questions_with_dpr_para
구성 설명 : NQ 말뭉치에는 실제 사용자의 질문이 포함되어 있으며 QA 시스템이 질문에 대한 답변을 포함하거나 포함하지 않을 수 있는 전체 Wikipedia 문서를 읽고 이해해야 합니다. 실제 사용자 질문을 포함하고 솔루션이 답변을 찾기 위해 전체 페이지를 읽어야 한다는 요구 사항으로 인해 NQ는 이전 QA 데이터 세트보다 더 현실적이고 어려운 작업이 됩니다. 이 버전에는 각 질문을 보강하기 위한 추가 단락(DPR 검색 엔진을 사용하여 얻음)이 포함되어 있습니다.
다운로드 크기 :
319.22 MiB
데이터 세트 크기 :
322.91 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'train' | 96,676 |
'validation' | 10,693 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/natural_questions_with_dpr_para_test
구성 설명 : NQ 말뭉치에는 실제 사용자의 질문이 포함되어 있으며 QA 시스템이 질문에 대한 답변을 포함하거나 포함하지 않을 수 있는 전체 Wikipedia 문서를 읽고 이해해야 합니다. 실제 사용자 질문을 포함하고 솔루션이 답변을 찾기 위해 전체 페이지를 읽어야 한다는 요구 사항으로 인해 NQ는 이전 QA 데이터 세트보다 더 현실적이고 어려운 작업이 됩니다. 이 버전에는 각 질문을 보강하기 위한 추가 단락(DPR 검색 엔진을 사용하여 얻음)이 포함되어 있습니다.
다운로드 크기 :
306.94 MiB
데이터 세트 크기 :
310.48 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'test' | 6,468 |
'train' | 96,676 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/newsqa
구성 설명 : NewsQA는 사람이 생성한 질문-답변 쌍으로 구성된 도전적인 기계 이해 데이터 세트입니다. Crowdworkers는 CNN의 일련의 뉴스 기사를 기반으로 질문과 답변을 제공하며 답변은 해당 기사의 텍스트 범위로 구성됩니다.
다운로드 크기 :
283.33 MiB
데이터 세트 크기 :
285.94 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'train' | 75,882 |
'validation' | 4,309 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{trischler-etal-2017-newsqa,
title = "{N}ews{QA}: A Machine Comprehension Dataset",
author = "Trischler, Adam and
Wang, Tong and
Yuan, Xingdi and
Harris, Justin and
Sordoni, Alessandro and
Bachman, Philip and
Suleman, Kaheer",
booktitle = "Proceedings of the 2nd Workshop on Representation Learning for {NLP}",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2623",
doi = "10.18653/v1/W17-2623",
pages = "191--200",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/openbookqa
구성 설명 : OpenBookQA는 주제(열린 책으로 요약되고 데이터 세트와 함께 제공되는 두드러진 사실 포함)와 주제가 표현되는 언어 모두에 대한 더 깊은 이해를 조사하여 고급 질의 응답 연구를 촉진하는 것을 목표로 합니다. 특히, 그것은 다단계 추론, 추가 상식 및 상식 지식 사용, 서식 있는 텍스트 이해가 필요한 질문이 포함되어 있습니다. OpenBookQA는 주제에 대한 인간의 이해를 평가하기 위해 오픈북 시험을 모델로 한 새로운 종류의 질의 응답 데이터 세트입니다.
다운로드 크기 :
942.34 KiB
데이터 세트 크기 :
1.11 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 500 |
'train' | 4,957 |
'validation' | 500 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{mihaylov-etal-2018-suit,
title = "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering",
author = "Mihaylov, Todor and
Clark, Peter and
Khot, Tushar and
Sabharwal, Ashish",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1260",
doi = "10.18653/v1/D18-1260",
pages = "2381--2391",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/openbookqa_dev
구성 설명 : OpenBookQA는 주제(열린 책으로 요약되고 데이터 세트와 함께 제공되는 두드러진 사실 포함)와 주제가 표현되는 언어 모두에 대한 더 깊은 이해를 조사하여 고급 질의 응답 연구를 촉진하는 것을 목표로 합니다. 특히, 그것은 다단계 추론, 추가 상식 및 상식 지식 사용, 서식 있는 텍스트 이해가 필요한 질문이 포함되어 있습니다. OpenBookQA는 주제에 대한 인간의 이해를 평가하기 위해 오픈북 시험을 모델로 한 새로운 종류의 질의 응답 데이터 세트입니다.
다운로드 크기 :
942.34 KiB
데이터 세트 크기 :
1.11 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 500 |
'train' | 4,957 |
'validation' | 500 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{mihaylov-etal-2018-suit,
title = "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering",
author = "Mihaylov, Todor and
Clark, Peter and
Khot, Tushar and
Sabharwal, Ashish",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1260",
doi = "10.18653/v1/D18-1260",
pages = "2381--2391",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/openbookqa_with_ir
구성 설명 : OpenBookQA는 주제(열린 책으로 요약되고 데이터 세트와 함께 제공되는 두드러진 사실 포함)와 주제가 표현되는 언어 모두에 대한 더 깊은 이해를 조사하여 고급 질의 응답 연구를 촉진하는 것을 목표로 합니다. 특히, 그것은 다단계 추론, 추가 상식 및 상식 지식 사용, 서식 있는 텍스트 이해가 필요한 질문이 포함되어 있습니다. OpenBookQA는 주제에 대한 인간의 이해를 평가하기 위해 오픈북 시험을 모델로 한 새로운 종류의 질의 응답 데이터 세트입니다. 이 버전에는 추가 증거로 정보 검색 시스템을 통해 가져온 단락이 포함되어 있습니다.
다운로드 크기 :
6.08 MiB
데이터 세트 크기 :
6.28 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 500 |
'train' | 4,957 |
'validation' | 500 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{mihaylov-etal-2018-suit,
title = "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering",
author = "Mihaylov, Todor and
Clark, Peter and
Khot, Tushar and
Sabharwal, Ashish",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1260",
doi = "10.18653/v1/D18-1260",
pages = "2381--2391",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/openbookqa_with_ir_dev
구성 설명 : OpenBookQA는 주제(열린 책으로 요약되고 데이터 세트와 함께 제공되는 두드러진 사실 포함)와 주제가 표현되는 언어 모두에 대한 더 깊은 이해를 조사하여 고급 질의 응답 연구를 촉진하는 것을 목표로 합니다. 특히, 그것은 다단계 추론, 추가 상식 및 상식 지식 사용, 서식 있는 텍스트 이해가 필요한 질문이 포함되어 있습니다. OpenBookQA는 주제에 대한 인간의 이해를 평가하기 위해 오픈북 시험을 모델로 한 새로운 종류의 질의 응답 데이터 세트입니다. 이 버전에는 추가 증거로 정보 검색 시스템을 통해 가져온 단락이 포함되어 있습니다.
다운로드 크기 :
6.08 MiB
데이터 세트 크기 :
6.28 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 500 |
'train' | 4,957 |
'validation' | 500 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{mihaylov-etal-2018-suit,
title = "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering",
author = "Mihaylov, Todor and
Clark, Peter and
Khot, Tushar and
Sabharwal, Ashish",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1260",
doi = "10.18653/v1/D18-1260",
pages = "2381--2391",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/physical_iqa
Config description : 물리적 상식 이해의 벤치마킹 진행을 위한 데이터셋입니다. 기본 작업은 객관식 질문 답변입니다. 질문 q와 두 가지 가능한 솔루션 s1, s2가 주어지면 모델 또는 인간은 가장 적합한 솔루션을 선택해야 하며 그 중 정확히 하나가 정확합니다. 데이터 세트는 비정형 솔루션을 선호하는 일상적인 상황에 중점을 둡니다. 이 데이터 세트는 사용자에게 일상적인 재료를 사용하여 물체를 만들고, 만들고, 굽고, 조작하는 방법에 대한 지침을 제공하는 instructables.com에서 영감을 받았습니다. 어노테이터는 물리적 지식이 대상이 되도록 구문론적으로나 주제적으로 유사한 의미론적 동요 또는 대체 접근 방식을 제공하도록 요청받습니다. 데이터 세트는 AFLite 알고리즘을 사용하여 기본 아티팩트를 추가로 정리합니다.
다운로드 크기 :
6.01 MiB
데이터 세트 크기 :
6.59 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 16,113 |
'validation' | 1,838 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{bisk2020piqa,
title={Piqa: Reasoning about physical commonsense in natural language},
author={Bisk, Yonatan and Zellers, Rowan and Gao, Jianfeng and Choi, Yejin and others},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={7432--7439},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/qasc
구성 설명 : QASC는 문장 구성에 중점을 둔 질의 응답 데이터 세트입니다. 그것은 초등학교 과학에 관한 8방향 객관식 질문으로 구성되어 있으며 17M 문장의 코퍼스와 함께 제공됩니다.
다운로드 크기 :
1.75 MiB
데이터 세트 크기 :
2.09 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 920 |
'train' | 8,134 |
'validation' | 926 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khot2020qasc,
title={Qasc: A dataset for question answering via sentence composition},
author={Khot, Tushar and Clark, Peter and Guerquin, Michal and Jansen, Peter and Sabharwal, Ashish},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8082--8090},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/qasc_test
구성 설명 : QASC는 문장 구성에 중점을 둔 질의 응답 데이터 세트입니다. 그것은 초등학교 과학에 관한 8방향 객관식 질문으로 구성되어 있으며 17M 문장의 코퍼스와 함께 제공됩니다.
다운로드 크기 :
1.75 MiB
데이터 세트 크기 :
2.09 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 920 |
'train' | 8,134 |
'validation' | 926 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khot2020qasc,
title={Qasc: A dataset for question answering via sentence composition},
author={Khot, Tushar and Clark, Peter and Guerquin, Michal and Jansen, Peter and Sabharwal, Ashish},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8082--8090},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/qasc_with_ir
구성 설명 : QASC는 문장 구성에 중점을 둔 질의 응답 데이터 세트입니다. 그것은 초등학교 과학에 관한 8방향 객관식 질문으로 구성되어 있으며 17M 문장의 코퍼스와 함께 제공됩니다. 이 버전에는 추가 증거로 정보 검색 시스템을 통해 가져온 단락이 포함되어 있습니다.
다운로드 크기 :
16.95 MiB
데이터 세트 크기 :
17.30 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 920 |
'train' | 8,134 |
'validation' | 926 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khot2020qasc,
title={Qasc: A dataset for question answering via sentence composition},
author={Khot, Tushar and Clark, Peter and Guerquin, Michal and Jansen, Peter and Sabharwal, Ashish},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8082--8090},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/qasc_with_ir_test
구성 설명 : QASC는 문장 구성에 중점을 둔 질의 응답 데이터 세트입니다. 그것은 초등학교 과학에 관한 8방향 객관식 질문으로 구성되어 있으며 17M 문장의 코퍼스와 함께 제공됩니다. 이 버전에는 추가 증거로 정보 검색 시스템을 통해 가져온 단락이 포함되어 있습니다.
다운로드 크기 :
16.95 MiB
데이터 세트 크기 :
17.30 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 920 |
'train' | 8,134 |
'validation' | 926 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khot2020qasc,
title={Qasc: A dataset for question answering via sentence composition},
author={Khot, Tushar and Clark, Peter and Guerquin, Michal and Jansen, Peter and Sabharwal, Ashish},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8082--8090},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/quoref
구성 설명 : 이 데이터 세트는 독해 시스템의 공동 추론 추론 기능을 테스트합니다. Wikipedia의 단락에 대한 질문이 포함된 이 범위 선택 벤치마크에서 시스템은 질문에 답하기 위해 단락에서 적절한 범위를 선택하기 전에 하드 상호 참조를 해결해야 합니다.
다운로드 크기 :
51.43 MiB
데이터 세트 크기 :
52.29 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 22,265 |
'validation' | 2,768 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{dasigi-etal-2019-quoref,
title = "{Q}uoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning",
author = "Dasigi, Pradeep and
Liu, Nelson F. and
Marasovi{'c}, Ana and
Smith, Noah A. and
Gardner, Matt",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1606",
doi = "10.18653/v1/D19-1606",
pages = "5925--5932",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/race_string
구성 설명 : Race는 대규모 독해 데이터 세트입니다. 데이터 세트는 중학생 및 고등학생을 위해 설계된 중국의 영어 시험에서 수집되었습니다. 데이터 세트는 기계 이해를 위한 훈련 및 테스트 세트로 제공될 수 있습니다.
다운로드 크기 :
167.97 MiB
데이터 세트 크기 :
171.23 MiB
자동 캐싱 ( 문서 ): 예(테스트, 검증),
shuffle_files=False
인 경우에만(훈련)분할 :
나뉘다 | 예 |
---|---|
'test' | 4,934 |
'train' | 87,863 |
'validation' | 4,887 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{lai-etal-2017-race,
title = "{RACE}: Large-scale {R}e{A}ding Comprehension Dataset From Examinations",
author = "Lai, Guokun and
Xie, Qizhe and
Liu, Hanxiao and
Yang, Yiming and
Hovy, Eduard",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1082",
doi = "10.18653/v1/D17-1082",
pages = "785--794",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/race_string_dev
구성 설명 : Race는 대규모 독해 데이터 세트입니다. 데이터 세트는 중학생 및 고등학생을 위해 설계된 중국의 영어 시험에서 수집되었습니다. 데이터 세트는 기계 이해를 위한 훈련 및 테스트 세트로 제공될 수 있습니다.
다운로드 크기 :
167.97 MiB
데이터 세트 크기 :
171.23 MiB
자동 캐싱 ( 문서 ): 예(테스트, 검증),
shuffle_files=False
인 경우에만(훈련)분할 :
나뉘다 | 예 |
---|---|
'test' | 4,934 |
'train' | 87,863 |
'validation' | 4,887 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{lai-etal-2017-race,
title = "{RACE}: Large-scale {R}e{A}ding Comprehension Dataset From Examinations",
author = "Lai, Guokun and
Xie, Qizhe and
Liu, Hanxiao and
Yang, Yiming and
Hovy, Eduard",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1082",
doi = "10.18653/v1/D17-1082",
pages = "785--794",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/로프
구성 설명 : 이 데이터 세트는 텍스트 구절의 지식을 새로운 상황에 적용하는 시스템의 능력을 테스트합니다. 인과적 또는 질적 관계(예: "동물 수분 매개자는 꽃의 수정 효율을 높입니다"), 이러한 배경을 사용하는 새로운 상황 및 관계의 효과에 대한 추론이 필요한 질문을 포함하는 배경 구절이 시스템에 제시됩니다. 상황의 맥락에서 배경 구절.
다운로드 크기 :
12.91 MiB
데이터 세트 크기 :
13.35 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 10,924 |
'validation' | 1,688 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{lin-etal-2019-reasoning,
title = "Reasoning Over Paragraph Effects in Situations",
author = "Lin, Kevin and
Tafjord, Oyvind and
Clark, Peter and
Gardner, Matt",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5808",
doi = "10.18653/v1/D19-5808",
pages = "58--62",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/social_iqa
구성 설명 : 사회적 상황에 대한 상식적인 추론을 위한 대규모 벤치마크입니다. Social IQa에는 다양한 일상 상황에서 감성 및 사회적 지능을 조사하기 위한 객관식 질문이 포함되어 있습니다. 크라우드 소싱을 통해 사회적 상호 작용에 대한 정답 및 오답과 함께 상식적인 질문이 수집되며, 작업자에게 다르지만 관련된 질문에 대한 정답을 제공하도록 요청하여 오답의 문체 아티팩트를 완화하는 새로운 프레임워크를 사용합니다.
다운로드 크기 :
7.08 MiB
데이터 세트 크기 :
8.22 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 33,410 |
'validation' | 1,954 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{sap-etal-2019-social,
title = "Social {IQ}a: Commonsense Reasoning about Social Interactions",
author = "Sap, Maarten and
Rashkin, Hannah and
Chen, Derek and
Le Bras, Ronan and
Choi, Yejin",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1454",
doi = "10.18653/v1/D19-1454",
pages = "4463--4473",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/squad1_1
구성 설명 : 위키백과 문서 세트에서 크라우드 워커가 제기한 질문으로 구성된 독해 데이터 세트입니다. 여기서 각 질문에 대한 답변은 해당 읽기 구절의 텍스트 세그먼트입니다.
다운로드 크기 :
80.62 MiB
데이터 세트 크기 :
83.99 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 87,514 |
'validation' | 10,570 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{rajpurkar-etal-2016-squad,
title = "{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text",
author = "Rajpurkar, Pranav and
Zhang, Jian and
Lopyrev, Konstantin and
Liang, Percy",
booktitle = "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2016",
address = "Austin, Texas",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D16-1264",
doi = "10.18653/v1/D16-1264",
pages = "2383--2392",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/squad2
구성 설명 : 이 데이터 세트는 원래 Stanford Question Answering Dataset(SQuAD) 데이터 세트와 크라우드 작업자가 적대적으로 작성한 대답할 수 없는 질문을 결합하여 대답할 수 있는 질문과 유사하게 보입니다.
다운로드 크기 :
116.56 MiB
데이터 세트 크기 :
121.43 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 130,149 |
'validation' | 11,873 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{rajpurkar-etal-2018-know,
title = "Know What You Don{'}t Know: Unanswerable Questions for {SQ}u{AD}",
author = "Rajpurkar, Pranav and
Jia, Robin and
Liang, Percy",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2124",
doi = "10.18653/v1/P18-2124",
pages = "784--789",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/winogrande_l
구성 설명 : 이 데이터 세트는 원래 Winograd 스키마 챌린지 디자인에서 영감을 받았지만 데이터 세트의 규모와 경도를 모두 개선하도록 조정되었습니다. 데이터 세트 구성의 주요 단계는 (1) 세심하게 설계된 크라우드소싱 절차와 (2) 인간이 감지할 수 있는 단어 연관성을 기계 감지 가능한 임베딩 연관성으로 일반화하는 새로운 AfLite 알고리즘을 사용한 체계적인 편향 감소로 구성됩니다. 서로 다른 크기의 교육 세트가 제공됩니다. 이 세트는 크기
l
에 해당합니다.다운로드 크기 :
1.49 MiB
데이터 세트 크기 :
1.83 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 10,234 |
'validation' | 1,267 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{sakaguchi2020winogrande,
title={Winogrande: An adversarial winograd schema challenge at scale},
author={Sakaguchi, Keisuke and Le Bras, Ronan and Bhagavatula, Chandra and Choi, Yejin},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8732--8740},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/winogrande_m
구성 설명 : 이 데이터 세트는 원래 Winograd 스키마 챌린지 디자인에서 영감을 받았지만 데이터 세트의 규모와 경도를 모두 개선하도록 조정되었습니다. 데이터 세트 구성의 주요 단계는 (1) 세심하게 설계된 크라우드소싱 절차와 (2) 인간이 감지할 수 있는 단어 연관성을 기계 감지 가능한 임베딩 연관성으로 일반화하는 새로운 AfLite 알고리즘을 사용한 체계적인 편향 감소로 구성됩니다. 서로 다른 크기의 교육 세트가 제공됩니다. 이 세트는 크기
m
에 해당합니다.다운로드 크기 :
507.46 KiB
데이터 세트 크기 :
623.15 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 2,558 |
'validation' | 1,267 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{sakaguchi2020winogrande,
title={Winogrande: An adversarial winograd schema challenge at scale},
author={Sakaguchi, Keisuke and Le Bras, Ronan and Bhagavatula, Chandra and Choi, Yejin},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8732--8740},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/winogrande_s
구성 설명 : 이 데이터 세트는 원래 Winograd 스키마 챌린지 디자인에서 영감을 받았지만 데이터 세트의 규모와 경도를 모두 개선하도록 조정되었습니다. 데이터 세트 구성의 주요 단계는 (1) 세심하게 설계된 크라우드소싱 절차와 (2) 인간이 감지할 수 있는 단어 연관성을 기계 감지 가능한 임베딩 연관성으로 일반화하는 새로운 AfLite 알고리즘을 사용한 체계적인 편향 감소로 구성됩니다. 서로 다른 크기의 교육 세트가 제공됩니다. 이 세트는 크기
s
에 해당합니다.다운로드 크기 :
479.24 KiB
데이터 세트 크기 :
590.47 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,767 |
'train' | 640 |
'validation' | 1,267 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{sakaguchi2020winogrande,
title={Winogrande: An adversarial winograd schema challenge at scale},
author={Sakaguchi, Keisuke and Le Bras, Ronan and Bhagavatula, Chandra and Choi, Yejin},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8732--8740},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
, - 설명 :
UnifiedQA 벤치마크는 다양한 형식과 다양한 복잡한 언어 현상을 대상으로 하는 20개의 주요 QA(질문 응답) 데이터 세트(각각 여러 버전이 있을 수 있음)로 구성됩니다. 이러한 데이터 세트는 추출 QA, 추상 QA, 객관식 QA 및 예/아니오 QA를 포함하여 여러 형식/카테고리로 그룹화됩니다. 또한 대비 세트는 여러 데이터 세트에 사용됩니다("대비 세트 "로 표시됨). 이러한 평가 세트는 원래 데이터세트의 일반적인 패턴에서 벗어나 전문가가 생성한 섭동입니다. 증거 단락과 함께 제공되지 않는 여러 데이터 세트의 경우 두 가지 변형이 포함됩니다. 하나는 데이터 세트가 있는 그대로 사용되는 것이고 다른 하나는 "_ir" 태그로 표시된 추가 증거로 정보 검색 시스템을 통해 가져온 단락을 사용하는 것입니다.
자세한 내용은 https://github.com/allenai/unifiedqa 에서 확인할 수 있습니다.
소스 코드 :
tfds.text.unifiedqa.UnifiedQA
버전 :
-
1.0.0
(기본값): 최초 릴리스.
-
기능 구조 :
FeaturesDict({
'input': string,
'output': string,
})
- 기능 문서 :
특징 | 수업 | 모양 | D타입 | 설명 |
---|---|---|---|---|
풍모Dict | ||||
입력 | 텐서 | 끈 | ||
산출 | 텐서 | 끈 |
감독된 키 (
as_supervised
문서 참조):None
그림 ( tfds.show_examples ): 지원되지 않습니다.
unified_qa/ai2_science_elementary(기본 구성)
구성 설명 : AI2 과학 질문 데이터 세트는 미국의 초등학교 및 중학교 학년 수준의 학생 평가에 사용되는 질문으로 구성됩니다. 각 질문은 4방향 객관식 형식이며 다이어그램 요소를 포함하거나 포함하지 않을 수 있습니다. 이 세트는 초등학교 학년 수준에서 사용되는 질문으로 구성되어 있습니다.
다운로드 크기 :
345.59 KiB
데이터 세트 크기 :
390.02 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 542 |
'train' | 623 |
'validation' | 123 |
- 예 ( tfds.as_dataframe ):
- 인용 :
http://data.allenai.org/ai2-science-questions
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/ai2_science_middle
구성 설명 : AI2 과학 질문 데이터 세트는 미국의 초등학교 및 중학교 학년 수준의 학생 평가에 사용되는 질문으로 구성됩니다. 각 질문은 4방향 객관식 형식이며 다이어그램 요소를 포함하거나 포함하지 않을 수 있습니다. 이 세트는 중학교 수준에서 사용되는 질문으로 구성되어 있습니다.
다운로드 크기 :
428.41 KiB
데이터 세트 크기 :
477.40 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 679 |
'train' | 605 |
'validation' | 125 |
- 예 ( tfds.as_dataframe ):
- 인용 :
http://data.allenai.org/ai2-science-questions
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/ambigqa
구성 설명 : AmbigQA는 그럴듯한 답변을 모두 찾은 다음 각 답변에 대한 질문을 다시 작성하여 모호성을 해결하는 오픈 도메인 질문 답변 작업입니다.
다운로드 크기 :
2.27 MiB
데이터 세트 크기 :
3.04 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 19,806 |
'validation' | 5,674 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{min-etal-2020-ambigqa,
title = "{A}mbig{QA}: Answering Ambiguous Open-domain Questions",
author = "Min, Sewon and
Michael, Julian and
Hajishirzi, Hannaneh and
Zettlemoyer, Luke",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.466",
doi = "10.18653/v1/2020.emnlp-main.466",
pages = "5783--5797",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_easy
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "쉬운" 질문으로 구성됩니다.
다운로드 크기 :
1.24 MiB
데이터 세트 크기 :
1.42 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 2,376 |
'train' | 2,251 |
'validation' | 570 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_easy_dev
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "쉬운" 질문으로 구성됩니다.
다운로드 크기 :
1.24 MiB
데이터 세트 크기 :
1.42 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 2,376 |
'train' | 2,251 |
'validation' | 570 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_easy_with_ir
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "쉬운" 질문으로 구성됩니다. 이 버전에는 추가 증거로 정보 검색 시스템을 통해 가져온 단락이 포함되어 있습니다.
다운로드 크기 :
7.00 MiB
데이터 세트 크기 :
7.17 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 2,376 |
'train' | 2,251 |
'validation' | 570 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_easy_with_ir_dev
구성 설명 : 이 데이터 세트는 고급 질의 응답 연구를 장려하기 위해 조립된 실제 초등학교 수준의 객관식 과학 질문으로 구성됩니다. 데이터 세트는 챌린지 세트와 쉬운 세트로 분할되며 전자는 검색 기반 알고리즘과 단어 동시 발생 알고리즘 모두에 의해 잘못 답변된 질문만 포함합니다. 이 세트는 "쉬운" 질문으로 구성됩니다. 이 버전에는 추가 증거로 정보 검색 시스템을 통해 가져온 단락이 포함되어 있습니다.
Download size :
7.00 MiB
Dataset size :
7.17 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 2,376 |
'train' | 2,251 |
'validation' | 570 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_hard
Config description : This dataset consists of genuine grade-school level, multiple-choice science questions, assembled to encourage research in advanced question-answering. The dataset is partitioned into a Challenge Set and an Easy Set, where the former contains only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm. This set consists of "hard" questions.
Download size :
758.03 KiB
Dataset size :
848.28 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,172 |
'train' | 1,119 |
'validation' | 299 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_hard_dev
Config description : This dataset consists of genuine grade-school level, multiple-choice science questions, assembled to encourage research in advanced question-answering. The dataset is partitioned into a Challenge Set and an Easy Set, where the former contains only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm. This set consists of "hard" questions.
Download size :
758.03 KiB
Dataset size :
848.28 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,172 |
'train' | 1,119 |
'validation' | 299 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_hard_with_ir
Config description : This dataset consists of genuine grade-school level, multiple-choice science questions, assembled to encourage research in advanced question-answering. The dataset is partitioned into a Challenge Set and an Easy Set, where the former contains only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm. This set consists of "hard" questions. This version includes paragraphs fetched via an information retrieval system as additional evidence.
Download size :
3.53 MiB
데이터 세트 크기 :
3.62 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,172 |
'train' | 1,119 |
'validation' | 299 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/arc_hard_with_ir_dev
Config description : This dataset consists of genuine grade-school level, multiple-choice science questions, assembled to encourage research in advanced question-answering. The dataset is partitioned into a Challenge Set and an Easy Set, where the former contains only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm. This set consists of "hard" questions. This version includes paragraphs fetched via an information retrieval system as additional evidence.
Download size :
3.53 MiB
데이터 세트 크기 :
3.62 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,172 |
'train' | 1,119 |
'validation' | 299 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{clark2018think,
title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
journal={arXiv preprint arXiv:1803.05457},
year={2018}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/boolq
Config description : BoolQ is a question answering dataset for yes/no questions. These questions are naturally occurring ---they are generated in unprompted and unconstrained settings. Each example is a triplet of (question, passage, answer), with the title of the page as optional additional context. The text-pair classification setup is similar to existing natural language inference tasks.
Download size :
7.77 MiB
Dataset size :
8.20 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 9,427 |
'validation' | 3,270 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{clark-etal-2019-boolq,
title = "{B}ool{Q}: Exploring the Surprising Difficulty of Natural Yes/No Questions",
author = "Clark, Christopher and
Lee, Kenton and
Chang, Ming-Wei and
Kwiatkowski, Tom and
Collins, Michael and
Toutanova, Kristina",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1300",
doi = "10.18653/v1/N19-1300",
pages = "2924--2936",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/boolq_np
Config description : BoolQ is a question answering dataset for yes/no questions. These questions are naturally occurring ---they are generated in unprompted and unconstrained settings. Each example is a triplet of (question, passage, answer), with the title of the page as optional additional context. The text-pair classification setup is similar to existing natural language inference tasks. This version adds natural perturbations to the original version.
Download size :
10.80 MiB
Dataset size :
11.40 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 9,727 |
'validation' | 7,596 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khashabi-etal-2020-bang,
title = "More Bang for Your Buck: Natural Perturbation for Robust Question Answering",
author = "Khashabi, Daniel and
Khot, Tushar and
Sabharwal, Ashish",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.12",
doi = "10.18653/v1/2020.emnlp-main.12",
pages = "163--170",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/commonsenseqa
Config description : CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge to predict the correct answers . It contains questions with one correct answer and four distractor answers.
Download size :
1.79 MiB
Dataset size :
2.19 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,140 |
'train' | 9,741 |
'validation' | 1,221 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{talmor-etal-2019-commonsenseqa,
title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
author = "Talmor, Alon and
Herzig, Jonathan and
Lourie, Nicholas and
Berant, Jonathan",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1421",
doi = "10.18653/v1/N19-1421",
pages = "4149--4158",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/commonsenseqa_test
Config description : CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge to predict the correct answers . It contains questions with one correct answer and four distractor answers.
Download size :
1.79 MiB
Dataset size :
2.19 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,140 |
'train' | 9,741 |
'validation' | 1,221 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{talmor-etal-2019-commonsenseqa,
title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
author = "Talmor, Alon and
Herzig, Jonathan and
Lourie, Nicholas and
Berant, Jonathan",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1421",
doi = "10.18653/v1/N19-1421",
pages = "4149--4158",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/contrast_sets_boolq
Config description : BoolQ is a question answering dataset for yes/no questions. These questions are naturally occurring ---they are generated in unprompted and unconstrained settings. Each example is a triplet of (question, passage, answer), with the title of the page as optional additional context. The text-pair classification setup is similar to existing natural language inference tasks. This version uses contrast sets. These evaluation sets are expert-generated perturbations that deviate from the patterns common in the original dataset.
Download size :
438.51 KiB
Dataset size :
462.35 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 340 |
'validation' | 340 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{clark-etal-2019-boolq,
title = "{B}ool{Q}: Exploring the Surprising Difficulty of Natural Yes/No Questions",
author = "Clark, Christopher and
Lee, Kenton and
Chang, Ming-Wei and
Kwiatkowski, Tom and
Collins, Michael and
Toutanova, Kristina",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1300",
doi = "10.18653/v1/N19-1300",
pages = "2924--2936",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/contrast_sets_drop
Config description : DROP is a crowdsourced, adversarially-created QA benchmark, in which a system must resolve references in a question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was necessary for prior datasets. This version uses contrast sets. These evaluation sets are expert-generated perturbations that deviate from the patterns common in the original dataset.
Download size :
2.20 MiB
Dataset size :
2.26 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 947 |
'validation' | 947 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{dua-etal-2019-drop,
title = "{DROP}: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs",
author = "Dua, Dheeru and
Wang, Yizhong and
Dasigi, Pradeep and
Stanovsky, Gabriel and
Singh, Sameer and
Gardner, Matt",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1246",
doi = "10.18653/v1/N19-1246",
pages = "2368--2378",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/contrast_sets_quoref
Config description : This dataset tests the coreferential reasoning capability of reading comprehension systems. In this span-selection benchmark containing questions over paragraphs from Wikipedia, a system must resolve hard coreferences before selecting the appropriate span(s) in the paragraphs for answering questions. This version uses contrast sets. These evaluation sets are expert-generated perturbations that deviate from the patterns common in the original dataset.
Download size :
2.60 MiB
Dataset size :
2.65 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 700 |
'validation' | 700 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{dasigi-etal-2019-quoref,
title = "{Q}uoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning",
author = "Dasigi, Pradeep and
Liu, Nelson F. and
Marasovi{'c}, Ana and
Smith, Noah A. and
Gardner, Matt",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1606",
doi = "10.18653/v1/D19-1606",
pages = "5925--5932",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/contrast_sets_ropes
Config description : This dataset tests a system's ability to apply knowledge from a passage of text to a new situation. A system is presented a background passage containing a causal or qualitative relation(s) (eg, "animal pollinators increase efficiency of fertilization in flowers"), a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. This version uses contrast sets. These evaluation sets are expert-generated perturbations that deviate from the patterns common in the original dataset.
Download size :
1.97 MiB
Dataset size :
2.04 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 974 |
'validation' | 974 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{lin-etal-2019-reasoning,
title = "Reasoning Over Paragraph Effects in Situations",
author = "Lin, Kevin and
Tafjord, Oyvind and
Clark, Peter and
Gardner, Matt",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5808",
doi = "10.18653/v1/D19-5808",
pages = "58--62",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/drop
Config description : DROP is a crowdsourced, adversarially-created QA benchmark, in which a system must resolve references in a question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was necessary for prior datasets.
Download size :
105.18 MiB
Dataset size :
108.16 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 77,399 |
'validation' | 9,536 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{dua-etal-2019-drop,
title = "{DROP}: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs",
author = "Dua, Dheeru and
Wang, Yizhong and
Dasigi, Pradeep and
Stanovsky, Gabriel and
Singh, Sameer and
Gardner, Matt",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1246",
doi = "10.18653/v1/N19-1246",
pages = "2368--2378",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/mctest
Config description : MCTest requires machines to answer multiple-choice reading comprehension questions about fictional stories, directly tackling the high-level goal of open-domain machine comprehension. Reading comprehension can test advanced abilities such as causal reasoning and understanding the world, yet, by being multiple-choice, still provide a clear metric. By being fictional, the answer typically can be found only in the story itself. The stories and questions are also carefully limited to those a young child would understand, reducing the world knowledge that is required for the task.
Download size :
2.14 MiB
Dataset size :
2.20 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 1,480 |
'validation' | 320 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{richardson-etal-2013-mctest,
title = "{MCT}est: A Challenge Dataset for the Open-Domain Machine Comprehension of Text",
author = "Richardson, Matthew and
Burges, Christopher J.C. and
Renshaw, Erin",
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
month = oct,
year = "2013",
address = "Seattle, Washington, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D13-1020",
pages = "193--203",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/mctest_corrected_the_separator
Config description : MCTest requires machines to answer multiple-choice reading comprehension questions about fictional stories, directly tackling the high-level goal of open-domain machine comprehension. Reading comprehension can test advanced abilities such as causal reasoning and understanding the world, yet, by being multiple-choice, still provide a clear metric. By being fictional, the answer typically can be found only in the story itself. The stories and questions are also carefully limited to those a young child would understand, reducing the world knowledge that is required for the task.
Download size :
2.15 MiB
Dataset size :
2.21 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 1,480 |
'validation' | 320 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{richardson-etal-2013-mctest,
title = "{MCT}est: A Challenge Dataset for the Open-Domain Machine Comprehension of Text",
author = "Richardson, Matthew and
Burges, Christopher J.C. and
Renshaw, Erin",
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
month = oct,
year = "2013",
address = "Seattle, Washington, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D13-1020",
pages = "193--203",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/multirc
Config description : MultiRC is a reading comprehension challenge in which questions can only be answered by taking into account information from multiple sentences. Questions and answers for this challenge were solicited and verified through a 4-step crowdsourcing experiment. The dataset contains questions for paragraphs across 7 different domains ( elementary school science, news, travel guides, fiction stories, etc) bringing in linguistic diversity to the texts and to the questions wordings.
Download size :
897.09 KiB
Dataset size :
918.42 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 312 |
'validation' | 312 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khashabi-etal-2018-looking,
title = "Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences",
author = "Khashabi, Daniel and
Chaturvedi, Snigdha and
Roth, Michael and
Upadhyay, Shyam and
Roth, Dan",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1023",
doi = "10.18653/v1/N18-1023",
pages = "252--262",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/narrativeqa
Config description : NarrativeQA is an English-lanaguage dataset of stories and corresponding questions designed to test reading comprehension, especially on long documents.
Download size :
308.28 MiB
Dataset size :
311.22 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'test' | 21,114 |
'train' | 65,494 |
'validation' | 6,922 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kocisky-etal-2018-narrativeqa,
title = "The {N}arrative{QA} Reading Comprehension Challenge",
author = "Ko{
{c} }isk{'y}, Tom{'a}{
{s} } and
Schwarz, Jonathan and
Blunsom, Phil and
Dyer, Chris and
Hermann, Karl Moritz and
Melis, G{'a}bor and
Grefenstette, Edward",
journal = "Transactions of the Association for Computational Linguistics",
volume = "6",
year = "2018",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q18-1023",
doi = "10.1162/tacl_a_00023",
pages = "317--328",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/narrativeqa_dev
Config description : NarrativeQA is an English-lanaguage dataset of stories and corresponding questions designed to test reading comprehension, especially on long documents.
Download size :
308.28 MiB
Dataset size :
311.22 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'test' | 21,114 |
'train' | 65,494 |
'validation' | 6,922 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kocisky-etal-2018-narrativeqa,
title = "The {N}arrative{QA} Reading Comprehension Challenge",
author = "Ko{
{c} }isk{'y}, Tom{'a}{
{s} } and
Schwarz, Jonathan and
Blunsom, Phil and
Dyer, Chris and
Hermann, Karl Moritz and
Melis, G{'a}bor and
Grefenstette, Edward",
journal = "Transactions of the Association for Computational Linguistics",
volume = "6",
year = "2018",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q18-1023",
doi = "10.1162/tacl_a_00023",
pages = "317--328",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/natural_questions
Config description : The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets.
Download size :
6.95 MiB
Dataset size :
9.88 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 96,075 |
'validation' | 2,295 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/natural_questions_direct_ans
Config description : The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets. This version consists of direct-answer questions.
Download size :
6.82 MiB
Dataset size :
10.19 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 6,468 |
'train' | 96,676 |
'validation' | 10,693 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/natural_questions_direct_ans_test
Config description : The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets. This version consists of direct-answer questions.
Download size :
6.82 MiB
Dataset size :
10.19 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 6,468 |
'train' | 96,676 |
'validation' | 10,693 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/natural_questions_with_dpr_para
Config description : The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets. This version includes additional paragraphs (obtained using the DPR retrieval engine) to augment each question.
Download size :
319.22 MiB
Dataset size :
322.91 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'train' | 96,676 |
'validation' | 10,693 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/natural_questions_with_dpr_para_test
Config description : The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets. This version includes additional paragraphs (obtained using the DPR retrieval engine) to augment each question.
Download size :
306.94 MiB
Dataset size :
310.48 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'test' | 6,468 |
'train' | 96,676 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/newsqa
Config description : NewsQA is a challenging machine comprehension dataset of human-generated question-answer pairs. Crowdworkers supply questions and answers based on a set of news articles from CNN, with answers consisting of spans of text from the corresponding articles.
Download size :
283.33 MiB
Dataset size :
285.94 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'train' | 75,882 |
'validation' | 4,309 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{trischler-etal-2017-newsqa,
title = "{N}ews{QA}: A Machine Comprehension Dataset",
author = "Trischler, Adam and
Wang, Tong and
Yuan, Xingdi and
Harris, Justin and
Sordoni, Alessandro and
Bachman, Philip and
Suleman, Kaheer",
booktitle = "Proceedings of the 2nd Workshop on Representation Learning for {NLP}",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2623",
doi = "10.18653/v1/W17-2623",
pages = "191--200",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/openbookqa
Config description : OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic (with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. In particular, it contains questions that require multi-step reasoning, use of additional common and commonsense knowledge, and rich text comprehension. OpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding of a subject.
Download size :
942.34 KiB
Dataset size :
1.11 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 500 |
'train' | 4,957 |
'validation' | 500 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{mihaylov-etal-2018-suit,
title = "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering",
author = "Mihaylov, Todor and
Clark, Peter and
Khot, Tushar and
Sabharwal, Ashish",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1260",
doi = "10.18653/v1/D18-1260",
pages = "2381--2391",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/openbookqa_dev
Config description : OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic (with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. In particular, it contains questions that require multi-step reasoning, use of additional common and commonsense knowledge, and rich text comprehension. OpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding of a subject.
Download size :
942.34 KiB
Dataset size :
1.11 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 500 |
'train' | 4,957 |
'validation' | 500 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{mihaylov-etal-2018-suit,
title = "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering",
author = "Mihaylov, Todor and
Clark, Peter and
Khot, Tushar and
Sabharwal, Ashish",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1260",
doi = "10.18653/v1/D18-1260",
pages = "2381--2391",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/openbookqa_with_ir
Config description : OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic (with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. In particular, it contains questions that require multi-step reasoning, use of additional common and commonsense knowledge, and rich text comprehension. OpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding of a subject. This version includes paragraphs fetched via an information retrieval system as additional evidence.
Download size :
6.08 MiB
Dataset size :
6.28 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 500 |
'train' | 4,957 |
'validation' | 500 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{mihaylov-etal-2018-suit,
title = "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering",
author = "Mihaylov, Todor and
Clark, Peter and
Khot, Tushar and
Sabharwal, Ashish",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1260",
doi = "10.18653/v1/D18-1260",
pages = "2381--2391",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/openbookqa_with_ir_dev
Config description : OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic (with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. In particular, it contains questions that require multi-step reasoning, use of additional common and commonsense knowledge, and rich text comprehension. OpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding of a subject. This version includes paragraphs fetched via an information retrieval system as additional evidence.
Download size :
6.08 MiB
Dataset size :
6.28 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 500 |
'train' | 4,957 |
'validation' | 500 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{mihaylov-etal-2018-suit,
title = "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering",
author = "Mihaylov, Todor and
Clark, Peter and
Khot, Tushar and
Sabharwal, Ashish",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1260",
doi = "10.18653/v1/D18-1260",
pages = "2381--2391",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/physical_iqa
Config description : This is a dataset for benchmarking progress in physical commonsense understanding. The underlying task is multiple choice question answering: given a question q and two possible solutions s1, s2, a model or a human must choose the most appropriate solution, of which exactly one is correct. The dataset focuses on everyday situations with a preference for atypical solutions. The dataset is inspired by instructables.com, which provides users with instructions on how to build, craft, bake, or manipulate objects using everyday materials. Annotators are asked to provide semantic perturbations or alternative approaches which are otherwise syntactically and topically similar to ensure physical knowledge is targeted. The dataset is further cleaned of basic artifacts using the AFLite algorithm.
Download size :
6.01 MiB
Dataset size :
6.59 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 16,113 |
'validation' | 1,838 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{bisk2020piqa,
title={Piqa: Reasoning about physical commonsense in natural language},
author={Bisk, Yonatan and Zellers, Rowan and Gao, Jianfeng and Choi, Yejin and others},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={7432--7439},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/qasc
Config description : QASC is a question-answering dataset with a focus on sentence composition. It consists of 8-way multiple-choice questions about grade school science, and comes with a corpus of 17M sentences.
Download size :
1.75 MiB
Dataset size :
2.09 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 920 |
'train' | 8,134 |
'validation' | 926 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khot2020qasc,
title={Qasc: A dataset for question answering via sentence composition},
author={Khot, Tushar and Clark, Peter and Guerquin, Michal and Jansen, Peter and Sabharwal, Ashish},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8082--8090},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/qasc_test
Config description : QASC is a question-answering dataset with a focus on sentence composition. It consists of 8-way multiple-choice questions about grade school science, and comes with a corpus of 17M sentences.
Download size :
1.75 MiB
Dataset size :
2.09 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 920 |
'train' | 8,134 |
'validation' | 926 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khot2020qasc,
title={Qasc: A dataset for question answering via sentence composition},
author={Khot, Tushar and Clark, Peter and Guerquin, Michal and Jansen, Peter and Sabharwal, Ashish},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8082--8090},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/qasc_with_ir
Config description : QASC is a question-answering dataset with a focus on sentence composition. It consists of 8-way multiple-choice questions about grade school science, and comes with a corpus of 17M sentences. This version includes paragraphs fetched via an information retrieval system as additional evidence.
Download size :
16.95 MiB
Dataset size :
17.30 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 920 |
'train' | 8,134 |
'validation' | 926 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khot2020qasc,
title={Qasc: A dataset for question answering via sentence composition},
author={Khot, Tushar and Clark, Peter and Guerquin, Michal and Jansen, Peter and Sabharwal, Ashish},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8082--8090},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/qasc_with_ir_test
Config description : QASC is a question-answering dataset with a focus on sentence composition. It consists of 8-way multiple-choice questions about grade school science, and comes with a corpus of 17M sentences. This version includes paragraphs fetched via an information retrieval system as additional evidence.
Download size :
16.95 MiB
Dataset size :
17.30 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 920 |
'train' | 8,134 |
'validation' | 926 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{khot2020qasc,
title={Qasc: A dataset for question answering via sentence composition},
author={Khot, Tushar and Clark, Peter and Guerquin, Michal and Jansen, Peter and Sabharwal, Ashish},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8082--8090},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/quoref
Config description : This dataset tests the coreferential reasoning capability of reading comprehension systems. In this span-selection benchmark containing questions over paragraphs from Wikipedia, a system must resolve hard coreferences before selecting the appropriate span(s) in the paragraphs for answering questions.
Download size :
51.43 MiB
Dataset size :
52.29 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 22,265 |
'validation' | 2,768 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{dasigi-etal-2019-quoref,
title = "{Q}uoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning",
author = "Dasigi, Pradeep and
Liu, Nelson F. and
Marasovi{'c}, Ana and
Smith, Noah A. and
Gardner, Matt",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1606",
doi = "10.18653/v1/D19-1606",
pages = "5925--5932",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/race_string
Config description : Race is a large-scale reading comprehension dataset. The dataset is collected from English examinations in China, which are designed for middle school and high school students. The dataset can be served as the training and test sets for machine comprehension.
Download size :
167.97 MiB
Dataset size :
171.23 MiB
Auto-cached ( documentation ): Yes (test, validation), Only when
shuffle_files=False
(train)분할 :
나뉘다 | 예 |
---|---|
'test' | 4,934 |
'train' | 87,863 |
'validation' | 4,887 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{lai-etal-2017-race,
title = "{RACE}: Large-scale {R}e{A}ding Comprehension Dataset From Examinations",
author = "Lai, Guokun and
Xie, Qizhe and
Liu, Hanxiao and
Yang, Yiming and
Hovy, Eduard",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1082",
doi = "10.18653/v1/D17-1082",
pages = "785--794",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/race_string_dev
Config description : Race is a large-scale reading comprehension dataset. The dataset is collected from English examinations in China, which are designed for middle school and high school students. The dataset can be served as the training and test sets for machine comprehension.
Download size :
167.97 MiB
Dataset size :
171.23 MiB
Auto-cached ( documentation ): Yes (test, validation), Only when
shuffle_files=False
(train)분할 :
나뉘다 | 예 |
---|---|
'test' | 4,934 |
'train' | 87,863 |
'validation' | 4,887 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{lai-etal-2017-race,
title = "{RACE}: Large-scale {R}e{A}ding Comprehension Dataset From Examinations",
author = "Lai, Guokun and
Xie, Qizhe and
Liu, Hanxiao and
Yang, Yiming and
Hovy, Eduard",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1082",
doi = "10.18653/v1/D17-1082",
pages = "785--794",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/ropes
Config description : This dataset tests a system's ability to apply knowledge from a passage of text to a new situation. A system is presented a background passage containing a causal or qualitative relation(s) (eg, "animal pollinators increase efficiency of fertilization in flowers"), a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation.
Download size :
12.91 MiB
Dataset size :
13.35 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 10,924 |
'validation' | 1,688 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{lin-etal-2019-reasoning,
title = "Reasoning Over Paragraph Effects in Situations",
author = "Lin, Kevin and
Tafjord, Oyvind and
Clark, Peter and
Gardner, Matt",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5808",
doi = "10.18653/v1/D19-5808",
pages = "58--62",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/social_iqa
Config description : This is a large-scale benchmark for commonsense reasoning about social situations. Social IQa contains multiple choice questions for probing emotional and social intelligence in a variety of everyday situations. Through crowdsourcing, commonsense questions along with correct and incorrect answers about social interactions are collected, using a new framework that mitigates stylistic artifacts in incorrect answers by asking workers to provide the right answer to a different but related question.
Download size :
7.08 MiB
Dataset size :
8.22 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 33,410 |
'validation' | 1,954 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{sap-etal-2019-social,
title = "Social {IQ}a: Commonsense Reasoning about Social Interactions",
author = "Sap, Maarten and
Rashkin, Hannah and
Chen, Derek and
Le Bras, Ronan and
Choi, Yejin",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1454",
doi = "10.18653/v1/D19-1454",
pages = "4463--4473",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/squad1_1
Config description : This is a reading comprehension dataset consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage.
Download size :
80.62 MiB
Dataset size :
83.99 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 87,514 |
'validation' | 10,570 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{rajpurkar-etal-2016-squad,
title = "{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text",
author = "Rajpurkar, Pranav and
Zhang, Jian and
Lopyrev, Konstantin and
Liang, Percy",
booktitle = "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2016",
address = "Austin, Texas",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D16-1264",
doi = "10.18653/v1/D16-1264",
pages = "2383--2392",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/squad2
Config description : This dataset combines the original Stanford Question Answering Dataset (SQuAD) dataset with unanswerable questions written adversarially by crowdworkers to look similar to answerable ones.
Download size :
116.56 MiB
Dataset size :
121.43 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 130,149 |
'validation' | 11,873 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{rajpurkar-etal-2018-know,
title = "Know What You Don{'}t Know: Unanswerable Questions for {SQ}u{AD}",
author = "Rajpurkar, Pranav and
Jia, Robin and
Liang, Percy",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2124",
doi = "10.18653/v1/P18-2124",
pages = "784--789",
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/winogrande_l
Config description : This dataset is inspired by the original Winograd Schema Challenge design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. Training sets with differnt sizes are provided. This set corresponds to size
l
.Download size :
1.49 MiB
Dataset size :
1.83 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 10,234 |
'validation' | 1,267 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{sakaguchi2020winogrande,
title={Winogrande: An adversarial winograd schema challenge at scale},
author={Sakaguchi, Keisuke and Le Bras, Ronan and Bhagavatula, Chandra and Choi, Yejin},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8732--8740},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/winogrande_m
Config description : This dataset is inspired by the original Winograd Schema Challenge design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. Training sets with differnt sizes are provided. This set corresponds to size
m
.Download size :
507.46 KiB
Dataset size :
623.15 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'train' | 2,558 |
'validation' | 1,267 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{sakaguchi2020winogrande,
title={Winogrande: An adversarial winograd schema challenge at scale},
author={Sakaguchi, Keisuke and Le Bras, Ronan and Bhagavatula, Chandra and Choi, Yejin},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8732--8740},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."
unified_qa/winogrande_s
Config description : This dataset is inspired by the original Winograd Schema Challenge design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. Training sets with differnt sizes are provided. This set corresponds to size
s
.Download size :
479.24 KiB
Dataset size :
590.47 KiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 1,767 |
'train' | 640 |
'validation' | 1,267 |
- 예 ( tfds.as_dataframe ):
- 인용 :
@inproceedings{sakaguchi2020winogrande,
title={Winogrande: An adversarial winograd schema challenge at scale},
author={Sakaguchi, Keisuke and Le Bras, Ronan and Bhagavatula, Chandra and Choi, Yejin},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={05},
pages={8732--8740},
year={2020}
}
@inproceedings{khashabi-etal-2020-unifiedqa,
title = "{UNIFIEDQA}: Crossing Format Boundaries with a Single {QA} System",
author = "Khashabi, Daniel and
Min, Sewon and
Khot, Tushar and
Sabharwal, Ashish and
Tafjord, Oyvind and
Clark, Peter and
Hajishirzi, Hannaneh",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.171",
doi = "10.18653/v1/2020.findings-emnlp.171",
pages = "1896--1907",
}
Note that each UnifiedQA dataset has its own citation. Please see the source to
see the correct citation for each contained dataset."